5

RIS

Prime..

——

Interpretive BASIC
Programmer’s Guide

IDR1813-000

)

3

First Printing April 1978

Copyright 1978 by
Prime Computer, Incorporated
145 Pennsylvania Avenue

Framingham, Massachusetts @17¢1

The information in this document is subject to change without notice

and should not be construed as a commitment by Prime Computer Corporation.
Prime Computer Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.

CONTENTS

SECTION 1 STRUCTURE OF A BASIC PROGRAM
STATEMENTS

STATEMENT FORMAT
STATEMENT EXECUTION

ENTERING BASIC
MODES OF OPERATION
CONVERSATIONAL MODE

ENTERING PROGRAM STATEMENTS

STORAGE OF STATEMENTS

REPLACING A STATEMENT

DELETING A STATEMENT

SUMMARY OF BASIC PROGRAM EDITING PROCEDURES

EXECUTING A PROGRAM
BATCH MODE

EXAMPLES OF FILE COMMAND
LOADING AND RUNNING PROGRAMS
EXAMPLES OF LOAD COMMAND

IMMEDIATE MODE
COMMANDS

LOAD COMMAND
FILE COMMAND
LIST COMMAND
RUN COMMAND

NEW COMMAND
CLEAR COMMAND
CONTINUE COMMAND
CHAIN COMMAND
RESTARTING BASIC

RESTARTING FROM PRIMOS III, IV, V
RESTARTING FROM PRIMOS II

ERROR MESSAGES

ii

Page

- e
1 1
e

=
1
(A

—
]
DO = =

T T el e) e
] 1 [} 1 1
VU AR DWN

[
t] 1]] 1
o on

I Rl e o N N N S
I] 1 [}

it bt b bl WO WO 00 00 00)

Ho oo

=
! i
=
iy -

1-12

I

J J

DI

CONTENTS

SECTION 2 TYPES OF DATA
NUMERIC VALUES
RANGE OF NUMERIC VALUES

STRING VALUES
SCALAR VARIABLES

NUMERIC SCALAR VARIABLES
STRING SCALAR VARIABLES

ARRAY VARIABLES

ARRAY DECLARATION

ARRAY BOUNDS, DEFAULT BOUNDS, AND STORAGE ALLOCATION
ARRAY ELEMENT REFERENCES

RELATIONSHIP OF NAMES

SECTION 3 EXPRESSIONS AND FUNCTIONS
EXPRESSIONS

NUMERIC EXPRESSIONS

ORDER OF EXPRESSION EVALUATION

USE OF PARENTHESES

STRING EXPRESSIONS

RELATIONAL EXPRESSIONS

EXAMPLES OF RELATIONAL EXPRESSION USE
EVALUATION OF RELATIONAL EXPRESSIONS
STRING VALUES IN RELATIONAL EXPRESSIONS

FUNCTIONS
SYSTEM FUNCTIONS
EXAMPLES OF USE OF SYSTEM FUNCTIONS
USER FUNCTIONS
SECTION 4 FILES
DEFINITION

PROGRAM FILES
DATA FILES

iii

(NCNLNL:I(.N(.NLN(N
PPN N

(93]
i
~

u({aw
~NO B

>
[[1
—

'
]
bt bt

CONTENTS

SECTION 4 (Cont)

FILE NAMES
FILE NUMBERS
FILE EXPRESSIONS

SECTION 5 STATEMENTS

BREAK

CALL

CHAIN

CLOSE

DATA

DEF

DEFINE FILE/DEFINE READ FILE

FILE MODES
RECORD SIZE

DIM

END
ENTER
FOR
GOSUB
GOTO

IF

INPUT
INPUT LINE
LET
MARGIN
NEXT

ON

ON END
ON ERROR
POSITION
PRINT

PRINTING NUMERIC EXPRESSIONS
PRINTING STRING EXPRESSIONS
COMMA SEPARATOR

COLON SEPARATOR

TAB REQUEST

PRINT LIST INFORMATION

iv

Page

Vi o
1
O‘\U'l-DQU;LNLNN

(I]
Qo

v n

[T T T N B |
~ O

o5

T
o W

R R R R R R R R R R R N N RS N T
]

NS N N N N el ol ol ol ol e (e o]

VNI OOWOIUTRWKNOP

5-23
5-24
5-25
5-25
5-26
5-26

J I

J J

3

DI

SECTION 6

CONTENTS

SECTION 5 (Cont)

PRINT USING

FORMAT FIELDS
NUMERIC FIELDS
STRING FIELDS
PRINTING SPECIAL CHARACTERS

READ
READ FILE

READ * FILE
READ LINE
REM
RESTORE
RETURN
REWIND

STOP

TRACE
WRITE FILE

READ AFTER WRITE CHECK
WRITE USING

ARRAY" REDIMENSIONING
INITIALIZATION STATEMENTS

ARRAY INITIALIZATION WITH REDIMENSIONING

ARRAY ASSIGNMENT
ARRAY ADDITION
ARRAY SUBTRACTION
ARRAY MULTIPLICATION
SCALAR MULTIPLICATION
PRODUCTS OF ARRAY
TRANSPOSE OPERATIONS
MATRIX INVERSION
DETERMINANTS

MAT READ

MAT READ FILE

MAT READ * FILE

MAT WRITE FILE

MAT INPUT

MAT PRINT STATEMENT

ARRAY MANIPULATIONS AND ARRAY STATEMENTS

'
—

[2)Ne Re Ne Jo e Neo We We We e Ne WeaWe Wa We We We)l [e)}
' 1
= = O 00000000 ULV N

N OO

CONTENTS

SECTION 7 INTERFACE CONVENTIONS

RELATING CALL TO SUBROUTINE
MODIFYING COMMAND FILE
RUNNING PROGRAM WITH CALL STATEMENTS

APPENDICIES

vi

'

)

D

M)

FOREWORD

BASIC is easy to learn and easy to use. The rules of form and usage
are simple. This manual describes the Prime BASIC language processor
and demonstrates how it is used to solve problems and cope with features
common to computers. It is suitable for (1) people who know BASIC and
want to know what Prime's BASIC is like and (2) experienced programmers.
The tyro is advised to supplement this book with a primer on BASIC.

Prime BASIC is an extended subset resembling the BASIC developed at
Dartmouth College. It provides users with the ability to write programs
and get meaningful results from the computer in a relatively short

time. With a few hours of instruction and/or practice, most people

can produce worthwhile BASIC programs and obtain useful data from

them.

Section 1 describes the structure of a BASIC Program, gives
a few general rules about writing BASIC program
statements, and tells how to enter BASIC and how
to input, edit, and RUN programs.

Section 2 describes in detail how numeric and string data are
represented in BASIC, and gives limits of numeric and
string data values.

Section 3 describes both numeric and string expressions,
expression operators, and expression evaluation.

Section 4 describes the organization, and the input and output
of program and data files.

Section 5 describes the statements available in the BASIC
language. The function and syntax of each statement
is described and examples of each statement are
given along with the description.

Section 6 describes the statements available to manipulate
matrices and vectors.

Section 7 describes how to interface called FORTRAN or PMA
language programs.

Appendix A gives some sample programs using the BASIC language.

Appendix B 1lists the error messages returned by the BASIC
language processor and the definitions of those
error messages.

vii

Appendix C is a quick summary of all the features of BASIC.
Appendix D describes a utility program to renumber BASIC programs.

Appendix E describes the memory requirements for various versions
of Prime BASIC.

VERSIONS OF BASIC

On the master disk (i.e., that disk supplied to the Prime customer with
all the current software), there are two versions of the BASIC
language interpreter: BASIC and DBASIC.

BASIC is a full version of the BASIC interpreter that includes MAT
functions and PRINT USING functions. DBASIC is a full version of BASIC
that takes advantage of Prime's double-precision floating point
arithmetic capabilities.

Both versions of BASIC are in the users command directory (CMDNCO).

DOUBLE PRECISION BASIC

Prime BASIC includes double precision floating point representation.
BASIC with double precision floating point 1is implemented using
floating point hardware; thus, coding that references floating point
operations is both in line and efficient.

All constants, variables, and array elements are represented in floating
point format with a 48-bit mantissa and a 16-bit exponent. This
representation allows numbers to have an accuracy up to 14.2 decimal
places. With double precision floating point, it is possible to repre-
sent a number up to:

9,999,999,999,999
or a dollar sum up to:

$99,999,999,999.99
without resorting to the use of scientific format.

To use the double precision version of BASIC, type the command:

DBASIC

viii

') J

J

D)

Use of this version of BASIC, other than for the extensions
outlined, is identical to the use of BASIC described in this manual.

RELATED PUBLICATIONS

The following Prime documents should be available for reference:
REFERENCE GUIDE, PRIMOS COMMANDS, PDR3109
NEW USER'S GUIDE TO EDITOR AND RUNOFF, PDR3104

REFERENCE GUIDE, FILE MANAGEMENT SYSTEM,PDR3110

4

SECTION 1
STRUCTURE OF A BASIC PROGRAM

STATEMENTS

A BASIC program consists of a series of sequentially ordered
statements.

Statement Format

Each statement is preceded by an integer called the statement
number. This number serves as both a statement sequence number as
well as a line identifier. An example of a BASIC statement is:

100 PRINT 'AARDVARK'
Each statement must be contained on one line. The length of a line
is dependent on the number of characters that can be typed before a

carriage return is needed to prevent the line from overflowing.
BASIC will accept lines up to 120 characters in length.

Statement Execution

When a program written in the BASIC language is run, the statements
are executed in order of statement number (unless a statement such as
GOTO affects the normal order).

ENTERING BASIC
To enter BASIC from operating system command level, type:
BASIC
The system then replies:
GO
>
The character '>' indicates that the BASIC processor is awaiting a

command, and is printed as a prompt.

Entering BASIC treename causes an automatic CHAIN treename
command.

MODES OF OPERATION

The Prime BASIC language processor consists of a command processor,
a statement editor and a BASIC language interpreter.

1-1

After entering BASIC from operating system command level, GO is
typed. The user may:

1. Input, edit, and RUN programs written in the BASIC
language (conversational mode);

2. Execute existing programs written in BASIC language and
stored on disk or paper tape (batch mode);

3. [Execute BASIC statements as they are typed at the terminal
(immediate mode).

CONVERSATIONAL MODE

Entering Program Statements

To enter a statement, type the statement number followed by the body
of the statement. All statements must be terminated by a carriage
return.

Statement Numbers: Statement numbers are integers that range from

1 to 9999. They do not have to be in cardinal sequence (i.e.,

1, 2, 3...n-1,n), but they must be in an ordered sequence (e.g., 10,
12, 15, 20...n). It is recommended that statements be numbered by
increments of 10 (100, 110, 120, 130...). Then, if a statement must
be inserted between 10 and 20, for example; it can be numbered 15,
and it is inserted between 10 and 20.

For example:

110 PRINT 'NAME', N$
120 PRINT 'ADDRESS', A$
130 PRINT 'CITY', C$

To insert lines between 110 and 120, and 120 and 130, in order to
make the output more readable, the user need only type:

115 PRINT
125 PRINT

at his terminal. The resulting program sequence is as follows:

110 PRINT 'NAME', N§
115 PRINT

120 PRINT 'ADDRESS', A$
125 PRINT

130 PRINT 'CITY', C$

1-2

J

J

D)

DY)

Body of Statement: In the conversational mode, each statement starts
after its statement number with a full or partial English word. This
word denotes the type of the statement.

Examples of BASIC statements are:

100 REM THIS IS A REMARK
110 LET X =2
120 PRINT X

Blanks: Blanks (spaces) have no significance except in string constants.
Generally, spaces are used to make the program more readable. For
example:

110 LET X =

3.14
110 LET X = 3.14
110 LETX=3.14

are equivalent. Thus, BASIC statements are free-formatted and the
user may employ spaces at will to format BASIC program text.

Special Characters: The following characters have special meaning:

n

removes the character previously typed.

N removes all previous characters on a line.

CARRIAGE RETURN Terminates a source statement.

This convention is consistent with the operating system and the
system Editor.

Storage of Statements

When the CARRIAGE RETURN is received by the BASIC language
processor, the statement is stored into the program storage area.
Staterents may be entered in any order, but their execution occurs
in the order of their statement number.

1-3

Replacing a Statement

If a statement is entered with the same number as a statement
already in the program storage area; the previous statement is
removed, and the new statement is placed in the storage area
instead.

Exgggle:

Existing statement is:

110 LET X1 = Y**2

Assume a new statement is typed as follows:
1160 LET X1 = Y2

The second statement mumbered 110 replaces the first statement.

Deleting a Statement

To remove an existing statement without replacing it, type the
statement number followed by a CARRIAGE RETURN. Example:

110

deletes statement numbered 110.

Summary of BASIC Program Editing Procedures

To input a statement, type:

unused statement number, followed by statement, followed by
CARRIAGE RETURN.

To 1insert a statement, type:

a statement using a statement number between the two
statements surrounding the insertion.

To replace a statement, type:

a new statement with a statement number that is identical
with the number of the statement to be replaced.

To delete a statement, type:

the statement number, followed by a CARRIAGE RETURN.

1-4

"“'

y

D

EXECUTING A PROGRAM

To run all BASIC statements in the program storage area, the user
types:

RUN

This causes the BASIC language processor to interpret and execute
the program comprised of the statements in the program storage area.

BATCH MODE

In addition to input from a terminal, statements may be input to the
BAS;C processor from source files on disk, or from off-line storage
devices such as paper tape, magnetic tape, or cards.

Data to be processed during RUN time may come either from the program
itself (DATA statements), from the terminal (via use of INPUT
statements), or from files on disk. Output data from a program
written in BASIC may either be printed at the terminal or placed in

a file on the disk.

Batch mode requires the reading and writing of files via the use of
the LOAD and FILE commands.

After a BASIC program is written, it may be saved in the User File
Directory (UFD) via a FILE command. (For information on the UFD,

see New User's Guide to EDITOR and RUNOFF, PDR3104. The syntax of
the FILE command internal to BASIC is:

FILE 'TREENAME'
or

FILE 'TREENAME', S1, S2

DI

where TREENAME is the symbolic name of the file to be created or updated
enclosed in single quotes. The single quotes are delimiters necessary
to BASIC and are not part of the file name. The file TREENAME is
updated; however, the contents of the BASIC program storage area remain
unchanged. TREENAME may also be a parenthesized device name (see the
DEFINE FILE statement discussion in Section 5). The optional argument
S1 specifies the first statement number of the BASIC program to be
filed. If SI1 is omitted, its default value is 1. The optional argu-
ment S2 is the last line to be filed. If S2 is omitted, its default
value is 9999. All statements having statement numbers in the inclu-
sive range S1 through S2 are output to the specified file or device.

Examples of FILE Command

FILE 'RANDXX'

creates a file named RANDXX in the current UFD.

1-5

FILE '(PTP)', 100, 200

creates a file for output to the paper tape punch consisting of all
the statements in the program storage area with statement numbers
between 100 and 200 inclusive. The contents of the program storage
area remain unchanged.

Loading and Running Programs

To load and run a BASIC program that has been previously edited and
saved in a file, the user loads the program by using the LOAD

command, and executes the program by issuing a RUN command immediately
after issuing the LOAD command.

The syntax of the LOAD command is:
LOAD 'TREENAME'
or
LOAD 'TREENAME', Sl

where TREENAME js the name of a file in the UFD or a symbolic device
specification and the single quotes are delimiters required by BASIC.
The optional argument S1 is a statement number specifying that all
statements in the loaded source files are to be biased by the specified
statement number value, in order to avoid conflict with any program
already loaded. If S1 is omitted, statements in the program storage
area are numbered the same as the corresponding statements in the file.

The RUN command may have been written as the last line of the source
file by use of the system editor. In this case, the initial LOAD
command causes the program to be both loaded and run.

Examples of LOAD Command

The command line:
LOAD 'RANDXX'

loads the previously saved file RANDXX into the program storage area.

LOAD '(PTR)', 1000

loads a file from the paper tape reader, and starts numbering the
stored statements at statement number 1000.

After the program, or programs are stored using the LOAD command,
the user executes all statements stored by typing:

RUN

1-6

)

J

Y)

D)

The following is an annotated example of some trivial programs
written in BASIC. It shows simple editing of a series of program
statements in conversational mode and the loading and running of
programs using BATCH mode concepts. The use of the BASIC FILE,
NEW, LIST and LOAD commands is also illustrated. User input is
underlined.

OK» BASIC

GO

>10 REM START BASIC is invoked and a simple
>20 PRINT ‘AARDVAARK’ program is typed in by the user
>30 END

>FILE “AARD’ <€—T0 save this program as a file

>NEW < To clear program storage area
>30_PRINT °SYZYGY’

>40 END <<——— Typing a new program

>FILE “SYZYGY*

>QUIT < To exit from BASIC

OKs eee

OK, BASIC
GO
>LOAD ‘AARD’
>LOAD °“SYZYGY’
>LIST
10 REM START
20 PRINT °AARDVAARK’
30 PRINT °SYZYGY’

At a later time BASIC is entered and

the filed programs are loaded
To 1list the contents of the program

storage area.

40 END
>RUN ~—<€——To execute program
AARDVAARK
SYZYGY Output from user program

END AT LI 40

>

1-6A

D

D)

IMMEDIATE MODE

Immediate mode allows a user to type BASIC statements with no state-
ment number and thereby obtain immediate results. Such statements
are not stored in the program storage area. For example:

PRINT 'XYZ'
causes the string XYZ to be printed at the terminal.
The immediate mode capability gives the user a super-calculator
with a rich choice of functions, automatic decimal point handling,
and up to 286 variables, as well as arrays available for partial
answer storage.

One use of immediate mode is to use the BASIC subsystem as a desk
calculator. For example:

X = 256%12
PRINT X
returns the product of 256 and 12.

The PRINT statement is a particularly useful immediate mode command.
For example:

LET X1 = 1.05
PRINT SIN (X1* 3.14959/180)

causes the appropriate value of the SIN function to be issued.

The immediate mode is useful at times for debugging programs written
in BASIC. For example, if the user has made use of the BREAK statement
(Section 5) to halt a program at some point, typing:

PRINT J2

prints the value of the variable J2 at the point that the execution
of the program was interrupted.

Similarly, it is possible to use the PRINT statement to print the
value of any and all variables at a point of interruption.

1-7

COMMANDS

The BASIC language processor provides a number of commands to be used
with the operating system and to initialize storage areas. Of these,
use of RUN, FILE and LOAD have been previously discussed.

These commands are usually executed in immediate mode, but they may be
part of a program statement.

The syntax and function of system commands are described in the follow-
ing paragraphs:

LOAD COMMAND
Syntax
LOAD 'TREENAME'
or
LOAD 'TREENAME', S1
'"TREENAME' - is a string constant that specifies
the file to be created (or parenthe-
sized device specified). The single
quotes are delimiters required by BASIC.
S1 - is a relocation constant that is added to
every statement number in the program,
written in BASIC, to be loaded.
Function

The specified file (of BASIC Source Statements) is loaded into the
BASIC program storage area.

The loaded program is merged with any program already loaded. For
examples, see the previous section entitled "Examples of Load Command'.

FILE COMMAND
Syntax
FILE '"'TREENAME'
or
FILE 'TREENAME', S1
or
FILE 'TREENAME, S1, S2

'"TREENAME' - (is the same as described for
LOAD, above.)

S1 (optional)
S2 (optional)

1-8

first line to be filed (default = 1).
last line to be filed (default = 9999).

J

ﬂ
N

3

DRI

Function

All statements whose statement numbers are in the inclusive range
S1 through S2 are output to the specified disk file or output
device. Output is in the order of their statement numbers.
Example:

FILE 'NEWPRO'
LIST COMMAND
Syntax
LIST
or
LIST S1
or
LIST S1, S2
S1 = first line to be listed (default = 1).
S2 = last line to be listed (default = 9999).
Function

The LIST command prints output at the terminal. The LIST command
provides a means to print all or part of the previously edited state-
ments for the user's inspection.

Examples:

LIST

LIST 100, 250
RUN COMMAND
Syntax

RUN

or

RUN S1

S1

statement number specifying the first statement
to be executed (default is the first statement
in the program).

1-9

Function
RUN clears all variables, allocates arrays from DATA statements,
and starts program execution.

NEW COMMAND

Szgtax

Function
The NEW command deletes all existing program statements and de-
allocates all arrays and variables.

CLEAR COMMAND
Syntax
CLEAR
Function
The CLEAR command de-allocates all arrays and variables. Any

existing statements are not deleted.

CONTINUE COMMAND
Syntax

CONTINUE
Function

The CONTINUE command restarts program execution at the point that it
was last interrupted by a BREAK, STOP or END statement.

CHAIN COMMAND
Syntax
CHAIN treename
Function
The CHAIN command is equivalent to NEW, LOAD treename, RUN. If errors

are detected in the program, RUN is suppressed and an error message is
printed.

1-10

J

~

DD

D)

RESTARTING BASIC

Restarting from PRIMOS III, IV or V

The user may desire to QUIT from running a BASIC program (e.g., to avoid
printing unwanted output), and then returning to running under control
of BASIC. Naturally, it is desirable not to lose any information in

the program storage area or cause any unspecified operations. For PRIMOS

III, IV or V, the correct manner to achieve this result is to type the
following sequence of system command lines:

CONTROL-P (Quit by pressing terminal CTL
and P Keys simultaneously).

START 1002

Restarting from PRIMOS II

Under PRIMOS II, to QUIT from running a BASIC program, momentarily set
Sense Switch 1. The running program is interrupted and control returns
to BASIC command mode.

Return from INPUT

The user may type the sequence:
CONTROL-C To return from BASIC INPUT statement

execution to conversational mode
(Refer to Section 5).

1-11

ERROR MESSAGES

Statements are syntactically checked as they are entered. Errors that
can only be detected within the context of the entire program are
detected at run time. An example of a syntax error is:

100 PRINT 'SUM OF A § B IS: X

The closing ' mark is missing and this would be detected immediately
upon entry. An example of a context error is an undefined statement
number in a GOTO statement.

If an error is detected during statement input, a two-line error 1is
printed at the terminal. The first line is the source statement in
error. The second line consists of first, a vertical arrow positioned
under the last character that BASIC examined before detecting the
error, and then a two-character error code. These codes are listed as
source (S) errors in the table in Appendix B.

Errors detected during program input cause the line in error to be
removed from the program.

During program exectuion (RUN time), detected errors cause a one-line
message to be printed as follows:

ERROR XX LINE 385

where XX is the error code. These codes are listed as execution (E)
errors in the table in Appendix B.

Errors detected during program execution also cause a pause to
occur. Typing:

CONTINUE

causes processing to continue with the next statement,

1-12

DA

DI

SECTION 2

TYPES OF DATA

Two types of data are supported by Prime BASIC: numeric and string.
BASIC allows constants and variables of both types.

NUMERIC VALUES

A numeric value is a floating point number.

Depending on the version

of BASIC being used, it may be single or double precision.

A numeric constant is written as a signed decimal number. It may
contain a decimal point, and it may be followed by an exponent.

The exponent field is optional and 1is written as the letter E
followed by an optionally signed decimal integer.

If the decimal point is omitted, it is assumed to be' located inmedi-
ately to the right of the last significant digit (right-most digit).

If the sign of either the numeric constant or the decimal integer
exponent is omitted, it is assumed to be positive.

Exg@ples:
12

1.2
-6.666
-7
2.5E-2
2.5E+12
-7.3E-2

SES

(.025)
(2.5 * (10)12)
(-.073)

(500000)

2-1

N

D)

Range of Numeric Values

For single-precision values; all constants, variables and array
elements are represented in floating point format with a 24-bit
mantissa and an 8-bit exponent. This representation allows numbers
to have accuracy up to 6.2 decimal digits, and the exponent of a
single-precision numeric value may range between -38 and +38. (10 to
the -38 power, or 10 to the +38 power).

With single-precision format, it is possible to represent a number up
to: 999,999 or a dollar sum up to: $9,999.99 without resorting to
scientific format.

For double-precision values; all constants, variables, and array
elements are represented in floating point format with a 48-bit
mantissa and a 16-bit exponent. This representation allows a number
to have an accuracy up to 14.2 decimal places.

With double-precision floating point, it is possible to represent a

number up to: 9,999,999,999,999 or a dollar sum up to: $99,999,999,999.99.

2-1A

STRING VALUES

A string value is a string of ASCII characters.

A string constant is written as a set of 0 or more contiguous ASCII
characters enclosed in delimiting single quotation marks

(or apostrophes). A string constant can contain any ASCII character
except: CARRIAGE RETURN, ?, or ". The maximum length

(number of characters) of a string value is a function of the line
size of the terminal or upon the available memory. Generally, this
is large enough to be of no problem to the user. It is suggested
that for convenience no string be greater than 80 characters.

Examples:

'"THIS IS A CHARACTER STRING CONSTANT'
'DATE/TIME/YEAR'
tt

(null string)
'12345"

SCALAR VARIABLES

A scalar variable is implicitly defined when it is used in a
BASIC program. The type of scalar variable (i.e., numeric or
string) is determined by the form of the variable name.

Numeric Scalar Variables

The name of a numeric scalar variable is a single letter (A-Z), or it
is a single letter (A-Z) followed by a single digit (0-9). Each
variable represents a single numeric value; there are 286 possible
numeric scalar variables. A numeric scalar variable is initialized
automatically to 0 at the start of the BASIC program that defines

it.

Examples of Numeric Scalars:

X
Al

G3

2-2

9

J

D)

DI

Example of Use of Numeric Scalars:

20 LET C1 3.14157

22 LET X

C1*2

String Scalar Variables

The name of a string scalar variable consists of a single letter
followed by a dollar sign. A string scalar variable represents a
character string of variable length. String variables are initial-
ized to a null (zero length) string at the start of the BASIC
program that defines it. The length of a string variable is auto-
matically set to the length of the string that is assigned to it.

Example of String Scalar Variable:
B$

Example of Use:

100 LET B$ = 'BALANCE IS:'

ARRAY VARIABLES

An array is an ordered set of values. All elements of an array
(array variables) have the same data type (i.e., either numeric or
string). The elements of an array are stored in contiguous
locations in storage and are referenced by an array subscript.
Arrays are stored in column major order.

An array name is represented by a single letter followed by the
parenthesized list of one or two bounds.

An array element is designated by an array subscript that is either
one number (bound) in parentheses (one-dimension), or two numbers
(bounds) in parentheses and separated by commas (two-dimensions).

An array with one-dimension may be operated on as a vector; with two
dimensions, it may also be operated on as a matrix (See Section 6).

Examples:
A (6)

A (2, 3)

2-3

Conceptually, the array A (2,3) is:
A (0,0) A (1,0) A (2,0)
A (0,1) A (1,01) A (2,1)
A (0,2) A (1,2) A (2,2)
A (0,3) A (1,3) A (2,3)
Table 2-1. Example Array A (2,3)

Logically, the array A (2,3) maps into storage as shown in the
following table:

Relative

Location Element
0001 A (0,0)
0002 A (1,0)
0003 A (2,0)
0004 A (3,0)
0005 A (0,1)
0006 A (1,1)
0007 A (2,1)
0008 A (3,1)
0009 A (0,2)
00010 A (1,2)
00011 A (2,2)
00012 A (3,2)

Table 2-2. Array Mapped into Memory

Array Declaration

An array can be explicitly defined in a DIM statement, or implicitly
defined by its use in the program.

DIM statements, if used, may appear anywhere in the program,
since BASIC locates and interprets all DIM statements before
cxecution starts.

Examples:
DIM A (5)

defines a one-dimensional array of 6 locations A, A (0) through
A (5).

2-4

'

DA

D)

DIM A (2, 3)

defines a two-dimensional array of 3 colums and 2 rows, A (0,0
through A (2,3).

NOTE: The entire chart shown in Table 2-1 is the array
specified by the DIM statement, DIM A (2,3). Those
elements of the array that do not have zero subscripts
(e.g., A (1,2); A (1,3); A (2,1); A (2,2); A (2,3) define
the matrix A. This matrix may be manipulated via the MAT
statements described in Section 6.

If the DIM statement is omitted (i.e., an array is undeclared), the
array dimensions are established in any MAT statement encountered;
otherwise the array is either a one-dimensional array of no more than
10 elements (e.g., A(10)), or a two-dimensional array of bounds 10 by
10 (e.g., A(10,10)), depending on how the array is referenced.

Use of an array in a MAT statement can cause the array to be defined
either as a vector or matrix depending on the other arrays used in
the statement (refer to Section 6).

Array Bounds, Default Bounds, and Storage Allocation

The original bounds of an array are established by the DIM statement that

defines the array, by the first MAT statement that references the array,
or the implicit value ((10) or (10,10)). The original bounds of an
array specify the total amount of storage allocated for the array. The
MAT statement can reduce the size of an array, but the MAT statement
cannot increase the size of the array beyond that of the original
definition. Although the dimensions of an array may be changed, the
storage allocation for the array does not change during execution of
the BASIC program.

Array Element References

Numeric Arrays: The name of a numeric array is a single letter
(A-Z). When a single element of an array is initialized to any
value, the remaining elements of numeric arrays are initialized to 0.

String Arrays: The name of a string array is a single letter followed
by a dollar sign, $. The elements of a string array are variable-
length character strings. These character strings may all be of
different lengths. Elements of a string array are initialized to a
null value when the array is established.

A reference to an array element consists of the array name followed
by a parenthesized list of one or two subscripts; i.e., A (S1) or
A (S1, S2), whére A is the array and Sl and S2 are positive numeric
expressions (see Section 3 for a discussion of expressions).

2-5

Examples of Numeric Arrays:

A(5)
A(2,4)

A(K, J) where K and J are numeric scalar
variables

A(I+1, J/2)

A(I+J, 3*K-2)
If the value of a subscript expression is fractional, the value of
the subscript is truncated to an integer before it is used to locate

the specified array element.

The value of any array subscript expression must be within the range
of the corresponding array dimension.

Examples of String Arrays
A$(5)
A$ (I+1, 3*K-2/J)
AS (A (I) /4)

Relationship of Names

A string variable and a string array may have the same name in a
program. Likewise, a numeric variable and a numeric array may have the
same name. However, these names all refer to entirely different
entities. The context in which the name is used is the determining
factor. For example:

10 B$ = 'BBBBB'
20 DIM B (7)

25 B =2

30 DIM B (7)

are different variables even though the names are apparently the
same. B§ references a string scalar variable; B$ (7) references

a spring array of 8 elements (0-7); B references a numeric scalar
variable and B (7) references a numeric array.

2-6

D

DD

SECTION 3
EXPRESSIONS AND FUNCTIONS

The first part of this section describes the arithmetic and string
expressions that may be constructed in the Prime BASIC language.
The second part describes functions, both user defined functions,
and system functions provided by BASIC, such as SIN, LOG, etc.

EXPRESSIONS

BASIC expressions are constructed from operators and operands. An
operand may be a constant, a scalar variable, subscripted array
element, or a function reference.

Operators that require two operands are called binary operators.
Operators that require one operand are called unary operators.

BASIC defines two types of expressions: numeric and string.
Numeric operands must not be used with string operators and string
operands must not be used with numeric operators. There is no
conversion between numeric and string values. The user must define

explicit conversion functions to convert from one data type to
another.

Numeric Expressicns

BASIC defines two unary operators and five binary operators that
operate on numeric operands to produce a numeric value.

Operator Meaning Example
+ unary plus +1
- unary minus -1
4 addition I+J
- subtraction I-J

multiplication I * J
/ division 1/J

4 exponentiation I 4 2
Table 3-1. Numeric Operators

The operators listed in Table 3-1 have their normal arithmetic
meaning. The operations are performed in floating-point arithmetic.

3-1

The user is cautioned that if he uses the system editor to create
a BASIC source program, then escape conventions must be observed
to produce some of the symbols desired. For example, using the
system editor, the exponentiation operator (t) must be escaped by
typing a double vertical arrow (t1).

Order of Expression Evaluation

A numeric expression is evaluated in the order of operator priority.
This is determined by rules of precedence in the BASIC langauge
processor. These rules of precedence are:

Precedence Operator
3 T
2 unary (+,-), *, /
1 binary (+I_)

Operators with higher precedence are evaluated before operators with
lower precedence.

Operators with equal precedence are evaluated from left to right.

Example:
A+B-C*D* Er FrQ

is interpreted as:

(A+B) -((C*D) * (E4(F1G))

Use of Parentheses

Parentheses can be used to control the order of expression evaluation.
The operation inside of the parentheses is evaluated first.

Example:
(A+B)/ 2

The addition, A + B, is performed, then the division by 2 is
performed, even though / has higher precedence than binary +.

String Expressions

String expressions in BASIC are constructed using the concatenation
operator (+). This operator combines two string values to produce

3-2

2

a string having a value of the characters of the first string

immediately followed by the characters in the second string.

Exgmgles:

A$ + BS

'"HELLO' + U$ + 'WELCOME TO PRIMOS'

'ABC' + BS

X$ (I-1) + 'Q1' + S$

Relational Expressions

BASIC defines six relational operators that may be used in either
numeric or string expressions, as long as data types are not mixed.

The relational operators are shown in the following table:

Operator Meaning

r <

Examples

less than

greater than

equal

less than or equal
less than or equal
greater than or equal
greater than or equal
not equal

not equal

Examples

X<Y X$ <Y$

X1>Y1 A$ >B$

I =J1 C$ = D$

J2 <= J3 A$ <= B$ + C$
J2 =< J3 A$ =< Y$

Z >=10 AS >= C$

10 => Q1 C$ => B$
D<>1 A$ <> !

Al >< A2 + A3 A$ >< B$

Table 3-2. Relational Operators

of Relational Expression Use

20
30

D)

IF SIN (ABS (K - 3.14) - 1) = (I+1) - 1 THEN 200

IF S§ <> 'T* THEN 450

3-3

BEvaluation of Relational Expressions

The relational expressions are true if the expressions satisfy
the given expression. Examples:

120 IF X =< Y THEN 900
150 IF B$ = 'END' THEN 9999
160 IF B$>A} THEN 120

String Values in Relational Expressions

When string values are compared in relational expressions, character by
character is determined by ASCII code. If the strings being compared
are of different lengths, the shorter of the two strings is extended

by adding spaces to the right until the strings are of the same

length; then, the strings are compared. Use of string values in
relational expressions are given in statements 150 and 160 in the
previous set of examples. '

FUNCTIONS

BASIC provides system functions and allows the user to provide
user-defined functions. A function reference consists of a function
name (such as TAN) followed by a parenthesized argument list containing
one or more arguments. Function arguments are evaluated before the
function is evaluated.

Arguments used in a function reference must match the number and
data type of arguments expected by the function.

Function references are evaluated at the point that their value
is required. They do not affect the order of operator evaluation.

System Functions

The following list gives the numeric and string functions provided
by the BASIC language processor. In all of the descriptions listed,
X represents any numeric expression, I and J represent any integers,
and A$ represents any string expression.

3-4

J

DA

DRI

SIN(X)

ASN(X)

COS (X)
ACS(X)

TAN(X)
ATN(X)
DEG (X)
RAD(X)
LOG(X)
EXP (X)
SQR(X)
ABS(X)
SGN(X)

INT(X)

RND (X)

LEN(A$)

SUB(A$,1,J)
or
SUB(A$,1)

INDEX (A$,
B$)

computes the sine of X, X expressed in radians

computes the principal arcsine of X.(-1<X<1). Value
returned is in the range -PI/2 to PI/2

computes the cosine of X, X expressed in radians

computes the principal arccosine of X.(-1<X<1). Value
returned is in the range 0 to PI.

computes the tangent of X, X expressed in radians
computes the arctangent of X, result is in radians
returns the number of degrees in X radians

returns the number of radians in X degrees
computes the natural logarithm (base e) of X
computes e raised to the X power

computes the square root of X

computes the absolute value of X

returns a value based on the sign of X as follows:

X <0 SOGNX) = -1
X =0 SON(X) =0
X< 0 SGNX) =1

If X =0, returns the greatest integer >= X. If X < 0,
returns the least integer >= X.

If X < 0, uses X to initialize the random number generator,
and returns X as the function value. If X > 0, uses X to
initialize the random number generator, and returns a
value in the range zero to one. If X = 0, returns a
random number in the range zero < result < 1. (Under
PRIMOS III, IV, or V it is receded whenever a RUN of

CHAIN statement is processed).

returns the length (number of characters) of the string AS$.
returns a substring that is composed of characters I-J of
string A$. If J is not specified, the result is one
character substring consisting of character I of string AS$.
returns the starting character position of the first

occurrence of BS in AS. If BS is .NULL. or does not occur
in AS, the value of function is 0.

3-5

D

5

CNT$$ (A$,1) formats A$ according to the value of I

TIME$

DATE$

LIN(I)

SPA(I)

TAB(I)
STR$ (X)
VAL (A$)

VAL(A$, 1)

DET(A)

Function

force parity bit on
discard all spaces
discard all .NUL., .NL., .FF., CR., and .ESC.
characters
8 discard leading spaces
16 reduce multiple spaces to one space
32 convert lower case to upper case
64 convert [to (and] to)
128 discard trailing spaces

SN

Multiple reformatting may be obtained by adding values
together.

returns system time in hours, minutes, seconds, and
milliseconds as the string HHMMSSmmm. (Hours are given
in 24-hour time)

returns system date as month, day, and year as string
MMDDYY.

used as an item in a print list; ignored unless output
is to a terminal.

I .Action

o N olh wng <o

>0 outputs I .CR. .LF. pairs
<0 outputs ABS(I) .LF. S

prints spaces to the terminal; ignored unless output
is to the terminal.

I Action

>0 outputs I spaces
<0 no output

tabs to position I on the output device
converts a numeric argument, X, into a character string

converts a string expression to its numeric value. The CE
error is reported if the string cannot be converted

converts the string expression A$ to its numeric value. If
successful I is set to 0; if the string cannot be converted
I is set to 1 and the VAL function is set to 0.

returns the determinent of the square matrix A

3-5a

Examples of Use of System Functions

INT: One use of the INT function is to round numbers. Example:
INT (2.9 + .5) = INT (3.4) = 3

The INT function can also be used to round any specific numeric
value to any specific number of decimal places. Examples:

INT (10*X1 + .S5) /10

rounds X1 to 1 decimal place.

INT (100 * X1 + .5) /100

rounds X1 to 2 decimal places.

RND: To produce twenty three-digit random integers, edit and run
the following BASIC program:

19 REM PROGRAM TO PRINT RANDOMN NUMBERS OF $-DIGITS OR LESS.

29 FOR I=1 TO 29

SU LET L=aNp (W)

35 LeT LI=INT(L*x1JJ9J)
40 PRINT LI

Sy WEXT 1

63 END

EXAMPLE OF NUTPUT
RUW
21l
352
3l
716
674
176
535
5917
353
164
373
399
13
266
473
61
645
9J6
212
699

END AT LINE 60

P

N

D)

The following example is a program that illustrates a use of each
of the system functions previously described; it is followed by

sample output so the user can get an idea of the results from using
the system functions.

V. EY CpAWeLE TO 300X JSE OF SYSTEYM FUNCTIONS

t
f
150 KhEA
t
F

Tu L‘T \ = - ‘]/LO.V)
o LFEM) DEORET I RaDIAS
i = L H 2000
170 = /s
167 & = 1.0471%
' = 1.957u7 ‘
l J' Yo er'lerZ Ty el i TS 3i,05,50,%0 DEGKREFS RESPFECTIVELY
ST RN ‘ ' i
s2 wEY TRLG - EYETRIC FoanNCTTONS CALCULATIONS

?.’11‘3) = >IN (y)
T4 5o = ST CO)
5. 34 o= ST (Y)
2n 0 o4 o= S Y)

)]

s 3 o= SIN ()
£ cr o= €5 (V)
chT Ll = 0y (W)
s 4 = CN3 (9)
.':1u e = (o> (Y)
3¢ £.o0= Lo (1)
Tao T o= TANA $)
24 T/ : 1a.¢()
240 74 = TENC)
461 tho= Tia{Y)
S0 T o= 1A (2)
“e T o= T (TA
/TR I SN G P
6. A% = AT L(T3)
G100 wd = P TNITA)D
f:i‘.i ? "'(_:'t('f‘l;,j;),('(‘,"'ﬂ; ','(./3"'T“\"‘J'['I.IF(T)‘\KI'

5 2S¢ AR Y

1T
[7
L CEINT 1. 0T T han0
0T
M

I L G T2 B

3-6A

480
L9
5SC0
510
5¢i)
530
S4U
554
5460
570
S%0
5910
6UU
610
520
630
640
650
664
670
&80
690
700
710
724
730
740
750
760
773
784y
794
800
810
w2l
830
P4y
&5
a6y
871
LRt
890
900
¢“1u
92)
930
S40
950
960
$71)
98

PRINT 6(:+»S4,Cl,ThL, AL

FRINT 20,S5,C5,T5,A5

REM

REM ARITHMETIC FUNCTIONS (LOG ETC)
REM

X = 7.50

L = LOG(X)

E = EXP(X)

@ = SQR(¥)

A = ABS(X)

1 = INT(X)

P = SGN(X)

PRINT

PRINT

PRINT *NUMBER =',X

PRINT 'LOG(X)',L

PRINT 'EXP',E

PRINT 'SQUARE ROOT',G

BRINT

PRINT 'ABS(X)','INT(X)','SIGN(X)'
PRINT

PRINT AL,I,P

PRINT

PRINT

REM RANDOM NUMBE® FUNCTIONS

REM

PRINT 'RANDOM NUMRER FUNCTIONS'
PRINT

PRINT "RNDCO)','OnD(N) ", RND(-N)'
PRINT

21 = RND ()

12 = RND(1)

13 = RND(=1)

FRINT 21,222,173

PRINT

REM STRING FUNCTIONS
REM

x$ = 'EVALUATION OF STRING EXPRESSIONS'

#RINT 'VALUE UF A GIVEN STRING:'
PRINT

PRINT X3

PRINT

L1 = LEN(XS$)

PRINT °'LENGTH OF STRING:'

PRINT L1

PRINT

PRINT 'SURSTRING POSITIONS 21-31:"
Bs = SUB{(X$,21,31)

PKINT BF

ORINT

EHND

3-6B

D

D

Sample Output:

FHDEGRERES

[

i

|t
-~
AN

i
(A

)
15

HUMBER =

LG

B

SENHRE ROOT

FEARMHDOM HUUMEER

b £ D

SIH

1. Va4l E-a2

THT e

FULMCT IOMS

MO 2

R THHM

E':;"j: 51‘ 3 E:::_'

SIEM

R M

P
%
[N
(]
=4
1

3-6C

T

Sample Output: (Cont)

WALLE OF A GIWEN STRIMG:

EVALLIATION OF STRIMG EXFEESZIONS

LEMGTH OF STREIMNG:

SUBSTRIMG POSITIONS 21-Z1:

EXFRESS IO

EMC AT LIME 2028

3-6D

'J

D)

User Functions

In addition to the system functions, BASIC allows the user to
define functions. These functions are local to the BASIC program
that contains them.

The name of a user-defined numeric function consists of the
letters FN followed by a single letter.

Example:
FNA (X)

A reference to a user defined function consists of the name of
the function fallowed by a parenthesized argument expression.

A user defined function is defined by use of the DEF statement
(see Section 5). For example:

120 DEF FNA (X2) = 3.14 * X1+2

A user defined function reference may be included as an operand
in an expression. Example:

170 LET Al = 3.14 / FNA (X1)
The argument of a user-defined function may be an arithmetic
expression. The expression in the function reference argument
is evaluated, and the value of the expression substituted for the
argument in the function definition. For example:

180 LET Al = 3.14 * FNA (X1 + COS (B(3,4))

3-7

3

D)

SECTION 4
FILES

DEFINITION

A BASIC file is a set of data external to the BASIC program. A file
is known to the operating system by its association with an
input/output device. The data in a BASIC file are organized into
sequential records. The contents of a file are made available

to the program by the execution of input/output statements that
transmit data between the file and the program.

The PRIME BASIC allows the user to create and use both program and
data files.

PROGRAM FILES

A program file may be created by using the operating system editor
(ED), to create a file consisting of sequentially ordered BASIC
statements. For detials, see NEW USER's GUIDE TO EDITOR AND RUNOFF,
PDR3104 and REFERENCE GUIDE, FILE MANAGEMENT SYSTEM, PDR3110

Generally, a BASIC program file is created by first, editing a
program in conversational mode, as described in Section 1; then,
using the FILE command, described in Section 1, to write the
program file in storage. For example:

FILE 'RANDIT'

stores the contents of the program storage area in a file on disk
named RANDII.

After a program file has been created, it may be loaded and executed
by entering BASIC and typing the LOAD and RUN commands. For
example:

BASIC

GO

>LOAD 'RANDII'
> RUN

The word GO and the »> character before the LOAD and RUN commands are
responses printed by the BASIC language processor.

DATA FILES

Data files for input to a BASIC program are created by using the
operating system editor (ED) to create files or by using other
BASIC or FORTRAN programs (Refer to Section 5, DEFINE FILE, for a
description of possible file formats).

4-1

An ASCII file, the most used type of file, is a string of ASCII
characters organized into lines followed by a CARRIAGE RETURN.

A line consists of a contiguous string of characters between a
CARRIAGE RETURN character and the next CARRIAGE RETURN character
in the file. The length of a record in a file can be up to 72
characters, including the commas and the CARRIAGE RETURN. Each
data item in the file must be separated from the other items by
a comma.

Data files are read, manipulated, and written, by DEFINE FILE,

DEFINE READ FILE, READ, REWIND and WRITE statements within any
programs written in the BASIC language, that reference data files.

File Names
The name of a file stored on disk is a string of six or less ASCII

characters enclosed in single quotes. This string is used by the

BASIC interpreter to locate the file. An example of a file name
is:

'RAND1X'

A file name may also be a parenthesized device name (see Section §).

File Numbers

A BASIC program refers to files by means of a logical file number.

The range of file numbers is between 1 and 8 inclusive. The corres-
pondence between a file name and a file number is established by

the DEFINE FILE (or DEFINE READ FILE) statement. A file is considered
to be open if it is currently assigned a file number; otherwise,

it is considered to be closed.

A DEFINE FILE statement in a BASIC program causes an attempt to
locate the specified file. No error message is printed if the file
cannot be located, unless the file was referenced in a DEFINE READ
file statement, in this case, an error message is printed. However,
even if the absence of a specified file is not detected, subsequent
statements that reference the file may produce an error message.

A file remains open until it is closed. A file can be closed when:
1. control returns from a BASIC program to an operating
system (either normally or abnormally). All files
opened by that program are then closed.

2. a file is closed if its file number is used in a
subsequent DEFINE FILE statement.

4-2

J

J

D)

File Expressions

The user can write an expression in a DEFINE FILE statement that is
evaluated to form a file number. The value of this expression
is truncated to an integer if it is a non-integer.

4-3

D)

SECTION 5

STATEMENTS

This section describes all the BASIC statements implemented by the
Prime BASIC language processor except for the array manipulation
statements. These are described in Section 6.

In all the examples shown in this section and Section 6, the response
character, >, and the INPUT statement prompt character ! are not
shown unless deemed necessary for the purposes of the example.

Table 5-1 is a list of configurations and the extent of the BASIC
implementation on those configurations. Appendix F gives further
details with regard to memory mapping and memory sizes.

Version of BASIC Memory
Size
BASIC with both MAT and PRINT USING 32K

statements (BASIC)

BASIC with Double Precision (DBASIC) 32K

Table 5-1. List of Configurations and BASIC
System Statement Availability

5-1

BREAK

The BREAK statement selectively enables or disables breakpoints
at specific statements.

Syntax
BREAK ON N1,...Nn
or

BREAK OFF NI1,...Nn

where N1...Nn is a list of statement numbers separated by commas.

If a statement at which a breakpoint is set is accessed during the
execution of a program, control is returned to the BASIC processor
comnand level (immediate mode) before the statement is executed.

If no statement numbers are specified with a BREAK OFF statement, all
breakpoints previously set ON are set OFF.

Example:
90 BREAK ON 40, 318, 215, 10, 45, 9999

195 BREAK OFF 10, 40

200 FOR X = 1 to 10

210 A = FNA (X)

215 REM, CHECKING VALUE OF A

220 NEXT X

235 BREAK OFF 215

5-2

')

J

D)

CALL

The CALL statement is used to interface to a written subroutine that
1s user-written in FORTRAN or assembly language.

SXEtax
CALL C

or
CALL C(L1. LZ....Ln)

where the constant C is an integer that serves as a subroutine
identifier. The value of the constant C is limited only by the
size of available memory; i.e., as many subroutines as will fit
in memory may be called. The subroutine identifier is related to
the address of the subroutine by a user supplied file. The format
and use of this file are described in Section 7, Interface Conventions.

Ll...Ln are items in a list that are argument specifications to
the subroutine calling sequence. The argument list may contain up
to 26 items. An argument specification can be a numeric or string
variable, a numeric expression, an array, a subscripted variable
or a function argument. String expressions or string constants
cannot be included in the argument list. Arrays, variables, or
subscripted variables can be redefined by the called subroutine.
However, the value of numeric constants or expressions cannot be
redefined by the called subroutine; they can only be passed to the
called subroutine. All items in the 1list Ll1...Ln must be separated by
commas .

Exggple
CALL 5 (X1, X2, 6, A(10), X+1)

5-3

3 N

D)

CHAIN
Begins execution of another program.

Syntax
CHAIN 'tree-name'

treename 1is a string constant or expression which is the name of
a BASIC program.

CHAIN is equivalent to: NEW
LOAD tree-name
RUN

If errors are detected in tree-name, a message is printed and RUN is
suppressed.

All existing stored programs are deleted, file units are closed and
all variables and arrays are initialized.
CLOSE
Closes the file unit specified by the expression.
Syntax
CLOSE #expression

expression is the file unit to be closed. No error is generated if
the unit is already closed.

5 - 3A

DATA

The DATA statement allows the user to specify a list of numeric or
string constants within the program. The constants must be
accessed by a RLAD statement.

Syntax:

DATA Cl, C2, C3,...,Cn

where Cl...Cn are numeric and/or string constants separated by commas.

A trailing cormma causes an error. The list of string or numeric
constants may be any length as long as the length of the line

is not exceeded. To extend the list of constants more than one line,
it i1s permissible to write subsequent DATA statements.

The DATA statement is a nonexecutable statement that creates a block
of data to be read by the READ statement. BASIC separates numeric
constants in DATA statements from string constants and maintans a
separate data pool for each type. Any number of DATA statements

can appear at any place in the program. Data from all of the DATA
statements in the program, taken in the order of the DATA statements,
are concatenated to create a block of numeric DATA and/or a block of
string data.

When there are no more DATA items to be read, the program prints
the message:

'OUT OF DATA AT N'
where N is a statement number; and the program terminates.
Examples:
100 DATA 2.3, 3.4, 3.7E02, 1, 2, 3
200 DATA 3.1415, 2.783, 0

300 DATA 'ITEMS', 300 'COST' 1.58

5-4

J

)

D)

DEF

The DEF statement defines a function of a single variable.

Syntax
DEF FENA(V)

where A is the function name and V is any variable. V may be an
expression that returns a value. For further explanation, refer to
'"User Defined Functions' in Section 3.

The DEF statement defines a single-line function whose value is the
value of any expression that can refer to the optional function
parameters. The type of the expression must be the same as the type
of the function as defined. A particular function cannot be defined
by more thdn one DEF statement in the same program.

A function parameter (function term) is a scalar variable that is
local to the function body, and a function parameter has no relation-
ship to a variable of the same name elsewhere in the program. The

value of the function parameter is set to the value of the corresponding

function argument when the function is invoked.

DEF is a non-executable statement, and a DEF statement can be
written anywhere in the program.

Examgles:
20 DEF FNX (B) = 2./COS(B)*3

100 DEF FNO (P) = 3.14159

5-5

DEFINE FILE/DEFINE READ FILE

The DEFINE FILE statement cpens the specified BASIC logical file
unit for reading and writing.

Syntax:
DEFINE FILE #E1 = 'S', M, F2

where E is an arithmetic expression defining file unit numbers (1-8),
S is a string expression specifying tree names or an I/C device,

M is an optional parameter that specifies the mode of the file, and
E2 is an optional parameter that defines file record size.

DEFINE READ FILE #E1 = 'S', M, E2

The DEFINE READ FILE statement functions the same as DEFINE FILE,
except it opens the specified BASIC Logical Unit for reading only.
The parameters have the same meaning as in the DFFINE FILE statement.
For further examples of usage of DEFINE FILE and DEFINE READ FILE,
refer to Appendix C.

El is an arithmetic expression defining PASIC logical
unit number. BASIC allows eight logical units (1-8).

Device Names
S is a string expression defining tree name. If the

name starts with a left parentheses, it is interpreted
as a device name of the format: (dxu)

where: d = device identifier
x = don't care
u = unit specifier

Possible values for device identifier are:

A - ASR - pdev =1

P - PTR/P - pdev = 2

C - Cards - pdev = 3

L - Line Printer - pdev = 4

M - Magnetic Tape - pdev = 5
The unit specifier, u, ranges from 0 to 9. If the

unit specifier is not a digit, the physical unit is
the BASIC unit plus 3.

5-6

J

J

D)

Disk File names are one to six characters long and begin with a letter.
I1/0 device identifiers are enclosed in parentheses and delimited by
single quotes. Valid I/0 device identifiers are as follows:

Device Identifier Device
'(A)! Teletype (terminal)
"(P)' Paper tape reader/punch
"(LPR)' Line printer
"(O)' Card reader
'(MT1)! Magnetic Tape #1
'(MT2)! Magnetic Tape #2
' (MT3)! Magnetic Tape #3
' (MT4)! Magnetic Tape #4

The standard versions of BASIC do not contain drivers for physical
devices 3 to 5. They can be configured by modifying the BASIC IOCS
configuration module, BASIO, and rerunning the appropriate command

file

File Modes

The optional mode parameter M specifies the mode of the file (i.e., the
kind of file that it is). Possible entries are:

Mode (M)
ASC
ASC SEP
BIN

Meaning
ASCII file.

ASCII file. When writing to the file, BASIC
inserts a comma between output fields rather
than the spaces specified by the WRITE state-
ment item separators. The type of file
produced by specifying ASC SEP is suitable for
input to other BASIC programs (i.e., acceptable
to BASIC as a READ file).

Binary file. Data written into this type of
file is in internal memory format instead of
being converted to ASCII strings. An arithmetic
item generates two words of data in the file,

a string item generates (C+2)/2 words of data
(where: C is the number of characters in the
string).

5-6A

.

3

Mode (M) Meanin
BIN DA Same as BIN mode, except:
1. Fixed length records are written.
2. The file is opened as a DAM file (Refer
to the Disk and Virtual Memory Systems
User Guide).
3. The POSITION statement operates on the
file.

If the mode parameter, M, is omitted; its value is considered to be ASC.
Record Size

The optional parameter E2 is an arithmetic expression that defines the
record size of a file (number of words/record). The value of E2 may
range from 2 to 512. If the field E2 is omitted, a value of 60 is
assumed. The parameter E2 must be specified if mode M is specified

as BIN DA.

Examples of Use of DEFINE FILE:

10 REM CARD TO PRINT CONVERSION, DECK 1000 CARDS

20 DEFINE FILE #1

1 (CRD) |

30 DEFINE FILE #2

'(LPR)'

35 REM N=CARD NUMBER; N$=BLANK OR END OF DECK;
C$=CARD IMAGE

50 FOR I =1 to 10000

60 READ FILE #1, N, C$, N$

70 IF N$§ = 'END OF DECK' THEN 99

75 REM STATEMENT 70 SHOWS ONE WAY TO HANDLE END OF FILE
76 REM SITUATIONS

77 REM SEE 'ON END'

80 WRITE ‘FILE #2, C$

90 NEXT I

99 END

5-7

DIM

The DIM statement defines the number and size of the dimensions of
a numeric array or string array.

Szgtax:
DIM A(C1)

or

DIM A(C1, C2)

where A is a numeric or string array name and Cl, C2 are unsigned
numeric constants that specify the upper bounds of the corresponding
dimension.

The DIM statement specifically defines array names, establishes the
nurber of dimensions (one or two), and specifies the number of
elements in each dimension. The lower bound of each array dimension
is always 0. The upper bound of each array dimension is that value
specified for the element in the DIM statement. (Cl + 1) locations
are allocated for a single-dimension array (vector); and ((Cl + 1) *
(C2 + 1)) locations are allocated for a two-dimension array.

Any number of DIM statements can appear in a program. However, an
array name can be explicitly defined by a DIM statement only once in
a program. (However, it can be redimensioned any number of times by
subsequent MAT statements). A DIM statement is nonexecutable.
Examples:

100 DIM A(12)

declares a one-dimensional numeric array of thirteen locations

(A(0)...A(1])).
300 DIM A$(2,3)

declares a two-dimensional string array of 3 colums (0, 1, 2) and
4 rows (0, 1, 2, 3).

NOTE: The arrays defined by DIM statements may be used later as

matrices (e.g., the set of array dimensions that are non-
zero). These operations are discussed in Section 6.

5-8

J

PTUS9 REV. 16 INTERPRETIVE BASIC

PTU 59

REV. 16 INTERPRETIVE BASIC

This document corrects and adds to The Interpretive BASIC Programmer's
Guide, Rev. B (IDR1813).

STATEMENTS

The following replaces the description of ENTER on page 5-9.

ENTER

ENTER #
Both forms of this statement (ENTER and ENTER #) allow a mmeric.or
string variable to be entered fram the terminal. In addition, a time

limit may be specified for entry, the actual time used returned, and,
for ENTER # , the user number assigned at LOGIN time is returned.

Syntax
ENTER time-1limit, time-lim-val, variable
ENTER # user-num-var [, time-limit, time-lim-val, variable]

time-1limit The time, in seconds (1-1800), allowed for terminal
input.

Time-1im-val The variable in which the actual time used for
input, in seconds, is returned. If time-limit is
exceeded, its negative, -time-limit is returned.

variable The variable, either numeric or string, for which a
value is expected from the terminal. If no value
is input during the allotted time, variable is set
to ¢ (numeric) or null (string).

user-num-var The variable which receives the user's login number
(ENTER # only). To display this value, type the
command PRINT user—-num-var.

Comments
ENTER and ENTER # do not display prompt characters. If inputs for

these statements are to be prompted, use a FRINT 'prompt-string'
statement prior to ENTER or ENTER # .

59 -1 February 1979

D)

3

END
The END statement terminates execution of the RASIC program.
Syntax

END

The END statement indicates the end of the main program. It is
equivalent to and has the same function as the STOP statement.

Exarples:
9999 END

When this statement is executed, the message:
END AT 9999

is printed.

ENTER

The ENTER statement is a timed input statement.

Syntax
ENTER #var
ENTER #var,expr,evar,isar
ENTER #var,expr,evar,isar
ENTER expr,evar,ivar
ENTER expr,evar,isvar
#var is the current user number
expr is the time 1limit expression in seconds, from 1 to 1800

evar is the elasped time for input. If no .NL. is typed with
expr seconds, evar is set equal to -expr.

ivar is the variable entered. If a time out occurs, it
is set to whatever value has already been typed on the
isar line.

Notes
The erase and kill characters are supported.

CONTROL-G does not cause an END OF DATA AT LINE
xXxxxx to occur.

If input is a string, then ENTER behaves like an
INPUT LINE statement.

No prompt character is printed.

5-9

FOR

The FOR statement defines the beginning of a loop, (sequence of
statements to be executed more than once within the program).
The NEXT statement must be used subsequent to the FOR statement
to define the end of the loop.

Syntax
FOR V = E1 TO E2
or
FOR V = El, E2
or
FOR V = E1 TO E2 STEP E3
or
FOR V = E1 TO E2, E3
or
FOR V = E1, E2, E3

where V is a scalar numeric variable; and El, E2, and E3 are

numeric expressions. The variable V is the control variable of the loop.
The first expression (El) defines the initial value of V. The

second expression (EZ) defines the final value of V. The expression

E3 is optional and 1is the incremental value added to V when the
subsequent NEXT statement is executed. The words TO and STEP may be
omitted and replaced by commas.

When the "'STEP E3" or "E3" term is omitted, the value +1 1s used.

The value of the control variable (V) can be modified within the
loop. Its value will be available at the end of the loop. Also, the
loop may contain statements that jump out of the loop.

FOR-NEXT loops can be nested indefinitely as long as available memory
is not exhausted. FOR-NEXT loops cannot be interleaved. A necsted
FOR-NEXT loop cannot use the same control variable as the FOR-NEXT
loop that contains it.

5-10

J

DA

3

5 REM ANOTHER EXAMPLE

10 PRINT °PLEASE SPECIFY N; °
12 INPUT N

14 PRINT °'PLEASE SPECIFY M;°
16 INPUT M

20 DIM B(1000)

30 FOR I=N TO M STEP .|

40 LET B(I)=3.,1416%]I12

50 PRINT I,B(D)

60 NEXT I

66 STOP
RUN
PLEASE SPECIFY N;
2
PLEASE SPECIFY M;
3¢5
2 12,5664
2.1 13.8545
2.2 15,2053
2.3 16,6191
2.4 18,0956
2.5 19.635
2.6 21,2372
2.7 22,5022
2.8 24,6301
2.9 26,4208
R) 28.2744
Je 1 30,1907
3.2 32.17
d.3 34.212
.4 36,3169
3¢5 38.4346

STOPPED AT LINE 66

The next example of FOR-NEXT assigns values to the elements of
a single dimension array.

110 DIM X(10)

110 FOR I = 0 TO 10

120 READ X(I)

140 NEXT I

300 DATA 0,1,2,3,4,5,6,7,8,9

One of the common reasons for using FOR-NEXT loops is to deal
with two-dimensional arrays. The idea is to use two subscript

5-11

variables to point to the column and row of the array controlled
by a loop. This is illustrated in the following example:

100 READ Cl,C2
110 FOR I=1 TO ClI

120 FOR J=1 TO C2

130 LET A(CI,J)=0

140 NEXT J

145 NEXT I

148 REM ELEMENTS OF ARRAY ASSIGNED TO ZERO

150 READ C3

160 IF C3=0 THEN 300

170 READ c4,X

180 LET A(C3,C4) =X

190 GOTO 150

200 REM STATEMENTS 150 TO 150 ASSIGN VALUES FROM THE DATA LIST TO
202 REM ELEMENTS OF ARRAY A.

300 FOR I=1 TO CI

305 FOR J=1 TO C2

310 PRINT ACI,J)

320 NEXT J

325 PRINT

330 NEXT I

350 REM ABOVE LOOP PRINTS VALUES OF ARRAY ELEMENTS.,
400 DATA 3,4

405 DATA 1,1,16,1,2,256,1,3,512,1,4,1046

410 DATA 2,1,34,2,2,300,2,3,13,2,4,9.87654E+08

420 DATA 3,1,99,3,2,88,3,3,7777,3,4,56

440 DATA O

999 END

RUN
16

%?g Values assigned to A(1,1),..., A(1,4)

1046

34
300

13 Values assigned to A(2,1),..., A(Z2,4)
9.87654E+08

99
83

;;’77 Values assigned to A(3,1),...,A(3,4)

END AT LINE 995

5-12

J

D

DI

GOSUB

The GOSUB statement allows control to be passed to an internal
subroutine.

Szgtax
GOSUB N

where N is a statement number in the program which specifies the line
at which the internal subroutine is to start. The subroutine must
contain a RETURN statement.

The GOSUB statement saves the line number of the statement that
follows it, and then transfers to the statement specified by the

line number N. When a RETURN statement is subsequently executed,
control returns to the statement whose line number was saved (i.e. the
statement that follows the referencing GOSUB statement).

A subroutine may itself contain a GOSUB statement. Up to eight

COSUB statements may occur before the execution of a RETURN statement.
RETURN always causes control to be returned to the statement follow-
ing the most recent outstanding GOSUB statement.

Examgles:
173 GOSUB 1000

The following is an example of a trivial but valid program; the
statements are executed in the order: 10, 30, 50, 70, 60, 40, 20.

10 GOTC 30
20 STOP

30 GOSUB 50
40 RETURN

50 GOSUB 70
60 RETURN

70 RETURN

5-13

GOTO

The GOTO statement causes program control to be passed to a non-
local, designated statement.

Syntax
GOTO N
where N is a statement number of a valid statement.

The GOTO statement causes program execution to continue at the
statement specified by N.

ExamEles:
10 GOTO 75

200 GOTO 400

Example use of GOTO:

100 PRINT 'INITIAL VALUE'
110 INPUT I

120 PRINT 'TYPE CHANGE'
130 INPUT C

135 REM C IS + OR -

138 IF C =0 THEN 999
140 LET I =1 +C

150 PRINT 'NEW VALUE IS', I
160 PRINT

180 GO TO 120

999 END

J

D

D)

IF

The IF statement allows processing to be dependent on the true
or false value of a relational expression.

Syntax
IF E1 rel E2 THEN N
or
IF El1 rel E2 GO TO N

where El and E2 are either both numeric expressions or both string
expressions; rel is one of the following relational operators:

Operator Meaning
< less than
> greater than
<=z OT =< less than or equal
>= OT =»> greater than or equal
= equal
<> Or >< not equal

N is either a statement number or a statement, including another
IF statement. (N can only be a statement if the verb is THEN.)

If E1 and E2 satisfy the relation specified by rel, control is

transferred to the statement specified by N; otherwise, execution
continues with the statement that follows the IF statement.

Note

Attempting to compare a string to a numeric
item is flagged as an error

100 IF A = B$ GOTO 1000

causes a mixed mode error when entered.

5-15

Examples
100
200
205
305
402

IF
IF
IF
IF

IF

A$ = 'YES' THEN 125

ABS (X-Y) < E1 THEN 75

Cl=>C2 GOTO 50

X <>0 THEN IF X < 100 GOTO 402
(TAN(X9)-1) = (T(J*2-1)+ 3 THEN 350

If any of the above conditions are false, program execution continues
with the statement that follows the IF statement.

5-16

J

J

D)

D)

INPUT

The INPUT statement requests data from the user terminal.

Syntax
INPUT L1, L2,...Ln
where L1,...In is a list of references separated by commas. Trailing

commas are ignored. If more items are input then are on the
specified list Ll...Ln, the additional items are discarded.

The INPUT statement causes data to be read from the users terminal
and assigned to the references in the list Ll...Ln in the order

that they are typed. If there are any array references in the 1list
Ll...Ln, subscript expressions are not evaluated until all references
that precede the subscript expressions in the input list have been
assigned values.

The INPUT statement prints the prompt-character, !, to

indicate that input is desired. The user must be sure to type
input as his program requires.

Data items provided by the user must match the data type of the
corresponding reference in the list, Ll...Ln, in the INPUT state-
ment.

A single quote may be combined in a string typed in response to an
INPUT statement. It is transferred literally to the program area.

Example, typing:
ABC'D
in response to an INPUT statement puts the string, ABC'D, in the
program storage area.
When a numeric value is expected, all characters up to the next comma

or CARRIAGE RETURN are input to the program. Spaces, blanks and tabs
are ignored.

5-17

Examples

10 INPUT 11
20 FOR IZ2 =11, 10

30 INPUT A (I2)
40 NEXT 12

Sample Output

RUN
16
112345
!11.3141579
12.45
19999999999
134

In the above example, the ! characters are typed by the system;
the numbers are input by the user in response to them.

Interrupting INPUT

The user can stop typing in a series of values in response to an INPUT
statement in his program and return to BASIC command level by typing

CONTROL-C (pushing the control and C key simultaneously. Example:

>10 INPUT A, B, C, D, E

>20 PRINT A, B, C, D, E

>RUN

!'1, 311 CTL-C «User interrupts INPUT

END OF DATA AT LINE 10 «Response from BASIC

>

<Return has been made to
command level

J

J

3

D)

INPUT LINE

Reads one line from the user terminal into-a specified string
variable or an array element.

Syntax
INPUT LINE svar
svar is the string variable in which the line is to be stored.

If the line is completely blank, svar is set to one space.
Trailing blanks are not included in svar.

5 - 18A

D)

D)

LET

The LET statement allows an arithmetic variable or string variable
to be assigned a value.

Syntax
LET V = E
or
V = E

where V is a numeric variable or a string variable, and E is an
expression of the same data type as V.

The LET statement assigns the value of an expression to one or
more scalar variables or subscripted array elements. Subscripts
in the expression E are calculated before the expression is
evaluated and before any assignment is done.

Scalar arithmetic variables not explicitly assigned a value are
assigned a default value 0 when first referenced in a program.
Unassigned scalar string variables are assigned a value of a null
string ('').

Array elements not explicitly assigned a value are given a default
assigned value when the array is referenced. (See Section 2.)

Note

Statements of the forms:

100 A+2 =28
110 A/ B=C
120 A+ 1 =1
130 A -2 =A
140 A 2 =B

Cause run time errors; they are not trapped
at statement entry.

Examples
10 T = 20
20 LET I = 2
100 LET X(5) = 24
102 LET V = C
110 LET A$ = 'STRING OF CHARACTERS'
120 LET A$ = B$ + C$
440 LET I3 = 5§
500 A(J) = SIN(X-4.5) + Q3
500 LET S$(J+5) = M$ + '.00
MARGIN

Specifies width of user console line in characters for output
generated by the PRINT and PRINT USING statements.

Syntax
MARGIN expression
expression is the number of characters; the range is 2 to 160
inclusive. A value outside the range causes an

MV error.

Once set, the margin specification remains in effect for the terminal
session unless changed by another MARGIN statement.

5 - 20

J

J

D

D)

NEXT

NEXT is used in conjunction with the FOR statement to increment
the control variable of the FOR-NEXT loop.

Syntax
NEXT V

where V is the control variable used with the previous FOR
statement.

Refer to the description of the FOR statement for further details.

The NEXT statement marks the end of a FOR-NEXT loop; it is always
used in conjunction with a preceding FOR statement,

Example
700 FOR I = 1 TO 100
705 LET A = A+1
713 NEXT 1

5-20A

DA

53 9

ON

ON allows control to be passed to one of a list of statements
depending on the value of an expression.

Syntax
ON E J GOTO { N1, N2, N3...Nn
GOSUB
where E is an expression and N1...Nn are numeric expressions
separated by commas that represent statement numbers.

The ON statement uses the value of the numeric expression to select
one of the statement numbers as the target of a GOSUB operation.
The value of the expression is truncated to yield an integer that
must be positive and also must be less than or equal to the number
of statement numbers (Nn) specified in the ON statement.

Exgmples:

20 ON (I) GOTO 100, 200, 300, 400

If T =1, control goes to statement 100; if I =
to 200; if I = 3, control goes to 300; and if I
to 400.

2, control goes
= 4, control goes

The ON statement is useful because the IF statement provides only
a two-way branch in a program. The ON statement can provide more
alternatives (i.e., a multi-way branch).

ON END
The ON END statement directs the transfer of control to a given
statement when an End of File is reached during a READ or POSITION
operation on the unit specified in the ON END statement.
Syntax

ON END #E GOTO N
where E is an expression that specifies a BASIC logical unit (1-8)
(Refer to DEFINE FILE); and N is a statement number. The ON END

statement does not test for End of File; it establishes action to
be taken when the last file record is read.

5-21

Exg@gle:
10 DEFINE FILE #1 = 'INPUT'
40 ON END 41 GO TO 20
50 READ #1, A$, A, B$, B
ON ERROR

Specifies control transfer if an error is detected during a read
write, or define operation.

’

Syntax
ON ERROR #unit GOTO statement-number
unit file unit expression (1-8) for which the error

test is to be performed.

statement-number location to which control is to be transferred
if error occurs.

Note

ON ERROR does not test the current status of unit,
but defines an action to be taken if a future error
of the type defined above occurs.

POSITION

POSITION positions a file on the unit specified to the start of the
record specified.

Syntax
POSITION #E1 TO E2

where E1 is an expression that specifies the BASIC logical unit (1-8)
and E2 is an expression that specifies the record in the file. Record
numbering starts at one. The unit (E1) must have been defined to be
BIN DA mode (refer to DEFINE FILE).

If the record number specified is greater than the number of records

in the file, the file is positioned to the End of File and the ON END
action is taken.

5-22

)

J

DO

N D

PRINT

The PRINT statement causes information to be printed at the terminal.

Szgtax
PRINT L1, L2,...,Ln

where L1...Tn are 0 or more items in a list separated by commas or
colons. Individual list items Ll...Ln may be either numeric
expressions or string expressions.

The PRINT statement generates lines of output to be printed at the
terminal. A single PRINT statement can generate either one line,
several lines, or partial lines of information.

The format of the terminal line image is determined by the
elements in the print list. Each element in the list Ll...In is
evaluated to yield a string of characters to be placed on the
terminal print line.

Printing Numeric Expressions

A PRINT list item that is a numeric expression is evaluated and
converted to the equivalent character string representation. This
string begins with the sign character and ends with a blank.

If the value of the expression is positive, a blank is printed for
the sign character. If the value of the expression is negative,

a minus sign is printed for the sign character.

Integers: Numbers printed as integers consist of a string from one
to six decimal digits without a decimal point. Examples:

14
-20796
1

Fractions: Numbers up to six decimal digits may be printed with a
decimal point.

Fractional format is used for nonintegers with an absolute image
in the range .1 to 99999.5. Examples:

5-23

2.5

12.4 3
-0.00796
0.00371
7.74186

Scientific Format: A number printed in scientific format is of
the form:

X E + Y
or
X E - Y

where X is a fractional number greater than one and less than ten,
and Y is an integer power of 10 ranging from -38 to +38. Scientific
format is used whenever integer or fractional format cannot be used
as shown in the following example:

LET X = 999999
LET X = X+l
PRINT X

results are printed:
1.0 E+6

Other examples of numbers in scientific format are:
2.54 E+13
5.0 E+5
-1. E-32

Printing String Expressions

A string expression in the PRINT list Ll...Ln is evaluated and

the resulting string of characters is printed in the output at the
teletype. BASIC does not interpret contents of this character
string; therefore, unpredictable results may occur from the inclusion
of characters that do not advance the print line by one position
(such as combinations of a2 backspace with other characters).

5-24

J J

N

D)

Comma Separator

The output from the PRINT statement is normally divided into zones
of 14 characters each. The first zone starts in column 0, the
second in colum 14, etc. The number of zones is determined by
characters, five zones are printed.

A comma in a print list causes the Teletype to advance to the first
character position of the next available zone. If character over-
flow occurs, the current line is printed and a new line is started.
If the last element of the print list is a comma, the partial line,
if any, is printed; and the Teletype is positioned at the start

of the next available zone.

Example Use of Comma in PRINT Statement

The statement:
100 PRINT I, J, K, L
might result in the following output:

1.0 2.4 1.416 75

Colon Separator

A colon in a PRINT list is used to separate PRINT elements and
inhibits the printing of items in different zones. A colon
specifies that the preceding items to be printed is to be followed
by a space rather than the number of spaces required to position
to the next print field.

Examples of Use of Colon in PRINT Statement

The previous example written as follows:
100 PRINT 1I: K
causes the following output:
1.0 1.416
The statement:
200 PRINT 'A': 'B', 'CAT': 'DOG'
prints:

A B CAT DOG

5-25

Tab Request

The tab print element requests that the Teletype be moved to a
specific character position (column). The tab request is written

as:

TAB (E)

where E is a numeric expression. An example of the tab request

is:

100 PRINT X: TAB(40): Y

PRINT List Termination

If the print list does not end in a comma or colon, a CARRIAGE
RETURN character is appended to the print output and the line is
transmitted to the terminal. A null (empty) PRINT list causes the
previous line to be finished or a blank line to be printed.

PRINT Statement Examples

Example of Use of Print

20
30
40
50

PRINT X, SIN (Z2 - Y 2)
PRINT 'VALUE IS': X-Y

PRINT ' ', A$ + SUB (B$, I, J)
PRINT

for Conservational Input/Output

Sample results:

10
20
30
40

PRINT 'ENTER LENGTH IN INCHES':
INPUT L$(1,1)

LET X4 = L(1,1)/12

PRINT X4: 'FEET'

ENTER LENGTH IN INCHES ! 30

2.50 FEET

5-26

J

J J

DD

N

PRINT USING
A formatted print-statement (the PRINT USING statement) generates
formatted output.

Syntax

PRINT USING S$, L1, L2...Ln
or

PRINT USING S§$, L1: L2...Ln

where S§ is a string expression and L1...Ln are items in a list
that are string or numeric expressions specifying values to be
printed, separated by commas or colons.

A single PRINT USING statement can generate one line, several lines,
or a partial line of printed output. The characters generated by

a PRINT USING statement are formatted as specified by a control
string.

Format Fields

The string specified by S$ contains a description of the editing
to be applied to the values in the list L1...Ln. The string S$

is divided into a series of fields each of which controls the
formatting of a single value in the PRINT list Ll...Ln. The fields

describe a numeric or string value.

There are seven special characters for defining numeric fields in the
format. These characters are:

#.,1+‘$

Their use in a format field is described in the following tables
and paragraphs.

There are three special characters for defining string fields in
the format. These are:

< > #

;heig use in a format field is described under the heading ''String
ields",

5-27

Numeric Fields

Pound Sign (#): For each pound sign in the field descriptor, a
digit (0-9) from the output value is substituted. Examples are
shown in the following table.

Field Format Datum Representation Remarks
#EHAH 25 25 Right justify digits
in field with leading
blanks.
#i#H# .-30 30 Signs and other non-

digits are ignored.

#EH Y 1.95 2 Only integers are
represented; the
number is rounded
to an integer.

LR R R 598745 kkkkk If the datum is too
large for th~ field,
all asterisks are
printed.

Table 5-2. Pound Sign in Descriptor Field

Decimal Point (.): The decimal point places a decimal point within
the string of digits in the fixed character position in which it
appears. Digit positions to the right of the decimal point are not
blank filled. Examples are shown in the following table.

Field Format Da tum Representation Remarks
#H#iH H4 20 20.00 Fractional positions
are filled with zeroes.
HE#HH HH 29.347 29.35 Rounding occurs on
0.079 0.08 fractions.
#HhHH B 789012.34 kkdhkkk When the datum is too

large, a field of all
asterisks, including
the decimal position,
is printed.

Table 5-3. Decimal Point in Descriptor Field

5-28

N

D)

Comma (,): A comma in a descriptor places a comma in the output

record at that character position unless all digits prior to the
comma are zero. In that case, a space is printed in that character
position. The following table gives examples of use of the comma.

Field Format Datum Representation Remarks

+$ HEH 30.6 +$ 30.60 Space printed for
comma when leading
digit is blank.

+$H HHH A 2000 +$2,000.00 Comma printed.

++f i 00033 +00,033 Comma is printed
when leading zeroes
are not suppressed.

Table 5-4. Comma in Descriptor Field

Vertical Arrow (t): A string of four vertical arrows can be used
to indicate an exponent field which is filled by E+n where n is a
two digit integer. The following table gives examples of use of the

vertical arrow.

Field Format Datum Representation

+H# A v 170,35 +17.04E+01
Hif HF e 22 -20.00E-02

+f# et 6002.35 +600.24E+01

Table 5-5. Vertical Arrow in Descriptor Field

Plus or Minus Signs (+ -): A single plus sign as either the first
or last character in the format descriptor causes a + to be output
if the data item is positive, or a - if the data item is negative.

Two or more plus signs starting at the first character of the
descriptor cause the sign to be output (+ if positive, - if negative)
immediately to the left of the most significant ronzero digit of
the output item. If required, the second through the last plus sign
are used as digit positions as required by the magnitude of the
number provided in the datum.

A minus sign (or signs) has the same effect as plus signs , except

a space 1is output for a positive sign. The following table gives
examples of the use of + or - in formatted print output.

5-29

Blanks precede the

When the datum is

too large for the
specified format a
field of all asterisks

The last leading
zero before the
decimal point is

Second and third
signs are treated
as digit positions

When the datum does
not agree with the
specified field,
asterisks are printed.

Field Format Datum Representation Remarks
+HHH #H 20.5 +20.50
+H# 1.01 +1.01
number.
+HH HH -1.236 - 1.24
+H# #H -234.0 ki
is printed.
Hi# #H- 20,5 20.50
Hith - 000.01 0.01
not suppressed.
Hite H#- -1.236 1.24-
#iH - -234.0 234.00-
- - #H- -20 -20.00
(#) on output.
T -200 kkkkkk
--- HH 2 2.00
Table 5-6 Plus and Minus in Descriptor Fields

5:30

J

D)

DY)

Dollar Sign ($): A single dollar sign as either the first or second

character in the descriptor causes a dollar sign to be output in
that position of the output record.

Multiple dollar signs starting at either the first or second
character of the descriptor cause a dollar sign to be placed
immediately to the left of the most significant nonzero digit.
The only character that may precede a dollar sign in a format
descriptor is a fixed sign (+ or -). The following table gives
examples of use of the § in formatted print output.

Field Format Datum Representation Remarks

-SHEH #E 30.512 $ 30.51

SHH# i+ -30.512 $ 30.51-

+$$85# 4o 13.20 + $13.20 Extra § signs may

be replaced by digits
as with floating
+ and - signs.

SS## #H- -1.0 $01.00- Leading zeroes are
not suppressed in the
part of the field.

Table 5-7. Dollar Sign in Descriptor Field

String Fields

Pound Sign (#): Each pound sign in the descriptor field represents
a character position from the second to the nth character position.
A character from the output (i.e., letter, numeral, or symbol) is
substituted in that position.

Examples are shown in Table 5-8.

Left Angle Bracket (<): This character in a descriptor field is
always positioned first when it is used. It represents the first
character position and the first character from the output is
substituted for it. It also designates that the output string is
to be left justified in the PRINT statement field. An example is
shown in Table 5-8

5-31

Right Angle Bracket (>):

always the first character of the field.

This character in a descriptor field is

The first character of the

output is substituted for it and it designates that the output string

is to be right justified
example.

in the PRINT field.

Field Format Datum Representation Remarks

> HEH##H TWELVE TWELVE right-justified

<HEHHHH TWELVE TWELVE left-justified
Table 5-8. String Descriptor Fields

Print Using Statement Example

BEM sedopebh ESFMPLE
REM

TNFUT FL B C

LET Ef="Ei--1"

LET FE=“—## ##-

FRINTLULING

ITHPUT =

Sample Output

>4
1254354

iX--1

258434
ook Kok K
45,39

Table 5«8 shows an

TO SHOW WARIOUS LSES OF PRINT USIHG

FRIMTUSTHG “CHEHSBRE SRR R EEE8 . X
FEINTUSTHG 448484488444 HH 048484, £F
FEM LAST THO LINES SHOW HOM JUSTIFICATION WORKS

FRIMTLSING FE, /LB C
FRINTUSING “TPH#8#8 #87. FL B, C

THEHHRHEHSEES TO L ES
FEM MOTE COMCATENST IO,

PRIMNTUSING <~ #8, #8#7, SOR O

[

,$945.93,45

wh==1

$I0J23 .04

$J3534

2.93

$JIJ4D . I

1654
29,51

ax-=-1 T0 2

5-32

FESRT T PLACEDR IM FIELD

SPECIFIED

J

D

D)

Printing Special Characters

To print a literal copy of one of the characters used with special
meaning in a format field, a string field must be used with the PRINT
statement and the character must be passed as part of the print list.
For example, the following statement prints a period at the end of the
output line.

10 PRINT USING 'X IS -### ':'.',X

If the statement were written
10 PRINT USING 'X IS -###.',X

the decimal point would be part of the numeric field output.

5-33

READ

The READ statement is used in conjunction with a DATA statement.

DATA defines a series of data values (literals); READ sets a list
of variables equal to literals in the numeric and/or string data

pools.

Syntax
READ L1, ..., Ln

where L1, ..., In is a list of references, which may be numeric
variables, string variables or arrays, separated by commas.

The READ statement causes numeric or string values stored in the data
pools by DATA statements to be assigned, starting at the next avail-
able element in the applicable data pool. The assignments are made
in the order specified by the references in the list specified with
the READ statement.

Subscript expressions in an array reference in the list L1, ..., Ln
are not evaluated until all preceding references have been assigned
values.

If a data list is exhausted, a message is printed and program
execution is halted.

The RESTORE statement may be used to prepare to read the data again.

Examples:

[N

100 READ X, Y,
110 READ X$, X, Y$, Y, 2§, Z
120 READ X(3)
For examples of READ, all of the DATA are treated as a single list
of numbers. Each READ operation takes the next available number

from the list and advances one position on the list. The following
example illustrates this principle:

5-34

3

DI

10 DATA 1.314 1.817

20 DATA 1, 2, 3, 5, 8, 13, 21, 34
30 DATA 55, 89

40 READ N1

50 READ N2

60 FOR K1+N1, N2

70 READ A(K1)

80 NEXT K1

90 RESTORE

READ FILE

Input may be read from a formatted file prepared by the system
editor, from a file created by another BASIC program or from a
binary file created by a FORTRAN program. The format of the files
and their types and modes is defined by the DEFINE FILE statement.

Szgtax
READ #N, L1, ..., Ln

where N is a file number and L1, ..., Ln are a list of all numeric
variables or all string variables separated by commas.

This variation of the READ statement reads from the file specified
by #N.

Initially, the READ FILE statement forces the reading of a new
record. The READ FILE statement reads values from the file starting

with the first data item in the record currently pointed to and the
file pointer is incremented by 1 after each data value is read.

If a file number specified in a READ FILE statement has not been
defined in a previous DEFINE FILE statement, the message:

ERROR UF AT LINE N

(where N is a statement number) is printed and execution of the BRASIC
program halts, and the user's program returns to BASIC command level.

Ex les:
100 READ +#4, V(I), A
110 READ #4, Al, A2, A3

5-35

READ * FILE
Syntax
READ * #N, L1, ... Ln
The READ * FILE statement has the same effect as the READ FILE
statement except it does not initially force a new record to be

read from the unit specified. If data remains in the last record
read from the unit, it is used before the new records are read.

READ LINE

Reads one line from a specified file into a specified string variable
or array element.

Syntax
READ LINE #var svar

var is the file unit number
svar 1is the string variable in which the line is to be stored.

If the line is completely blank, svar is set to one space.
Trailing blanks are not included in svar.

REM

This statement identifies a remark. It is not executed.

Syntax
REM S

where S is any string of ASCII characters not including the carriage
return character.

The string of characters following REM is ignored by the BASIC
interpreter. The REM statement has no effect on the program; it
is provided for the convenience of the user.

Example:

10 REM PROGRAM TO PERFORM MEDIA CONVERSION
20 REM MLG MODIFIED BY SDH 10-15-72

30 REM

40 .REM

5-36

J

DI

RESTORE

The RESTORE statement resets the DATA 1list pointer so that the list
may be re-used by subsequent READ statements in the program.

Szgtax
RESTORE
RESTORE #
RESTORE $

The RESTORE statement re-initializes either or both of the data pools.
The next read statement executed reads the first data item in the
pool or pools restored.

The RESTORE statement resets each data pool. The RESTORE § statement

resets the string data pool only. The RESTORE # statement resets
the arithmetic data pool only.

5-36A

Example

112 READ A, B
115 LET C= A*B
120 PRINT A: 'e@' B, “PRICE'": C

130 RESTORE

(; 135 READ Z

140 PRINT 'NO OF ITEMS IS':Z
900 DATA 100, 3.50

Output is:
100 e 3.50 PRICE 350.
(NO OF ITEMS IS 100
RETURN

The RETURN statement causes control to be returned from the sub-

routine that contains it to the statement immediately following
r the GOSUB statement that invoked the subroutine (i.e., the last
, outstanding GOSUB).

Syntax

RETURN

5

5-37

Ex les:

100 INPUT A

110 GOSUB 300

111 INPUT A$

120 IF A$ <> 'END' THEN 100
130 END

300 REM 'SUBROUTINE TO CALCULATE IF A’
301 REM 'NUMBER N IS PRIME'

310 FOR X = (A-2) TO 1 STEP -1

320 LET Ql = A/X

325 LET Q2 - INT(X.X)

330 LET R = Ql - Q2

340 GOSUB 400

350 NEXT X

360 IF R =0 THEN 380

370 PRINT 'NUMBER' :A: 'IS A PRIME'
380 RETURN

400 IF R >< THEN 420

410 PRINT 'NUMBER' :A: 'IS NOT A PRIME'
420 RETURN

The RETURN statement in statement number 380 causes a return to the
statement 111; the RETURN statement in 420 causes a return to 350.
REWIND
The REWIND statement causes the specified I/0 unit to "rewind'.
Syntax

REWIND #N
where N is an arithmetic expression defining a file unit (1-8).

If the REWIND statement refers to a disk file, it is reset to start
from the first record.

Ex les:

100 DEFINE FILE #4 = 'ALPHA'
110 INPUT N

120 FOR I =1 TO N

130 READ #4, A

140 NEXT I

150 REWIND #4

5-38

J

D)

STOP
STOP causes the program to return to command level.
Syntax

STOP

Any files opened by the program are closed. Executing a STOP
statement in a program is equivalent to an END statement.

Example
9999 STOP
causes a message to be printed such as:

STOPPED AT 9999

TRACE

The TRACE statement is used to turn trace mode ON or OFF.

Syntax
TRACE ON
or
TRACE OFF

When trace mode is ON, the statement number of each statement is
printed prior to its execution.

5-39

TRACE is useful in debugging a program that contains many GOTO
and/or GOSUB statements.

Examples: 110 TRACE ON
115 FOR I = 1 TO 10
120 A3 = Al + FNX (I) -3.1
130 IF A3 < 0 THEN 400
150 GOSUB 6000
160 IF A3 =0 THEN 500
170 GOSUB 7500
180 IF A3 > 0 THEN 600
190 GOSUB 9000
195 NEXT 1
200 TRACE OFF

Assuming all conditions are true (in the first pass) a partial view
of the trace might look as follows:

5-40

y

N

D)

WRITE FILE
The WRITE FILE statement directs output to a file.
Syntax

WRITE #N

or

WRITE #N, L1,...Ln
where N is an expression that yields a file number (1-8) and
Ll,...Ln is an optional 1list of all numeric variables or all string
variables separated by commas or colons.

A print element in the list can be an expression or a TAB request.

WRITE statement output lines are appended to the specified file in
a stream.

Either full lines (terminated by a CARRIAGE RETURN character) or
partial lines (terminated by a comma or colon) may be output to a
file.

Read After Write Check

If an attempt is made to read on a unit after a WRITE has been
performed, without an intervening REWIND or redefinition of the unit,
a WR error diagnostic is printed. This check does not apply in the
case of writing BIN DA files.

5-41

10
20
30
40
120
130
135
140
150

DEFINE FILE #1 = '(LPR)'

FOR I = 1 TO 100

WRITE #1, 'ITEM-':X, 'COST-$ ' Y, 'ONE EACH'
NEXT I

DEFINE FILE #2 = 'ALPHA'

1 TO 100

FOR X

LET N X2

WRITE #2, X, N

NEXT X

Statements 10 to 40 print 100 lines on the line printer (if it is
assigned); statements 120 to 150 consecutively write 100 values
of X and 100 values of N onto a disk file ALPHA.

WRITE USING

Formatted output strings may be passed to a file by means of the

WRITE USING statement.

Szgtax

WRITE USING S$, #N, L1,...,Ln

where N is a file number (1-8); S$ is a string expression, as in
the WRITE USING statement; and L1,...,Ln are a list of expressions
separated by commas or colons.

This variation of the WRITE USING statement directs output to be
appended to a Teletype formatted file. A single WRITE USING state-
ment can generate one line, several lines, or a partial line of

output.

Exgggle:
140

WRITE USING 'X COST IS S$### #4' #3, A

5-42

J

D

3

SECTION 6
MATRIX MANIPULATIONS
AND
MATRIX STATEMENTS

The BASIC statements discussed in the previous section permit the
elements of a matrix to be defined and used on an element by element
basis. The MAT statement, discussed in this section, allows matrices
to be manipulated as a unit. In addition to the individual examples
given in this section, examples showing the use of the MAT statement
are given in Appendix A.

Although the arrays have a colum number 0 and a row number 0, the
MAT statement ignores all matrix elements that have one dimension
equal to zero (i.e., the MAT statement manipulates vectors and
matrices, 0 elements are indeterminate).

MATRIX REDIMENSIONING

The original bounds and the current bounds are determined by the
DIM statement, or by the default bounds value (10) or (10,10), or
by the first MAT statement that references a matrix. The current
bounds of a matrix can be changed within certain constraints.

The total amount of storage defined by the current bounds must be
less than or equal to the amount of storage set aside for the
original bounds. For example:

100 DIM A (10, 10)

300 MAT A = ZER (5, 5)
400 MAT A = ZER (3, 24)
500 MAT A = ZER (2, 29)

are all legal redimensions of the matrix A; but:
550 MAT A = ZER (5, 25)
is not legal redimensioning of matrix A.

A matrix may be assigned the value of another matrix with different
current bounds, provided this operation conforms to the rules for
redimensioning just discussed. The current bounds of the target
matrix are automatically changed to be the same as the current bounds
of the matrix assigned.

6-1

When the current bounds of a matrix are changed, any elements of
that matrix with one or more subscripts equal to 0 are destroyed.
INITIALIZATION STATEMENTS

There are three MAT statements to facilitate the assignment of the
individual matrix elements.

Syntax
MAT A = CON
or
MAT A = 1IDN
or
MAT A = ZER
where A is a numeric matrix.
These matrix initialization statements set the matrix specified to
the left of the = to a constant matrix having the same bounds.
The values to the right of the = are called matrix constants.
The constant CON sets each element of the matrix defined by matrix
A to 1. Conversely, the constant ZER sets each element of the matrix

defined by A to 0.

The constant IDN sets the matrix defined by matrix A to the identity
matrix. This action is defined by the following algorithm:

A (1,7)

1 IF I =17
A (1,J)

0 IF I<«>J

For the IDN assignment to be valid, the matrix A must be two-dimen-
sional and the number of colums must equal the number of rows
(i.e., A must be a square matrix).

6-2

J

D)

Examples
200 MAT V = CON

sets elements of matrix V to all ones

300 MAT Z = ZER

sets elements of matrix Z to all zeroes

340 DIM I

I

400 MAT I = IDN

(4,4)

sets matrix I to the identity matrix
Elements of the matrix defined by matrix I

are assigned as follows:

Row Colum 1
1 = 1
z = 0
3 = 0
4 = 0

MATRIX INITIALIZATION WITH REDIMENSIONING

Matrices may also be redimensioned in the MAT..

or MAT...IDN statments.

6-3

(%

| &

.CON, MAT...ZER

Syntax
MAT A = CON (B1)
or
MAT A = CON (Bl, B2)
or
MAT A = ZER (B1)
or

MAT A = ZER (Bl, B2)
or
MAT A = IDN (Bl, Bl)

where A is a numeric matrix and Bl and B2 are expressions which
define a matrix bound.

These matrix initialization statements set the matrix to the left
of the = to a constant matrix having the bounds specified by Bl
and B2; and in addition, assign values to the elements of the
matrix defined by matrix A according to the functions of the
specified MAT...ZER..., MAT...CON, and MAT...IDN statement.

Examples
20 DIM X(4,5)

30 MAT X = CON (3,3)
Xis 1 1 1

60 DIM Y(3,3)
70 MAT Y = Z ER (4,2)

Yis 0 O
0 0
0 0
0 0

6-4

'J

J

3

DD

MATRIX ASSIGNMENT
A matrix may be assigned the value of another matrix.
Syntax
MAT A=B
where A and B are numeric matrices.

Both A and B must be either both one-dimensional (vectors) or both
two-dimensional (matrices).

The matrix assignment statement sets the matrix appearing to the
left of the = to the value of the matrix appearing to the right of

the =. The current bounds of the target matrix are charged to the
assigned matrix.

Examples
10 DIM A (6,6)

20 DIM B (5,4)
30 MAT A = B

the assignment at statement 30 is a legal assignment; but

15 DIM C - (10, 10)
25 DIMD - (2, 10)
35 MATD = C

is not legal since the effect of the assignment is to try and
assign a larger storage area, (matrix C) into the smaller one
(matrix D) which would be charged with 80 more locations than were
originally allocated.

MATRIX ADDITION

Syntax
MAT A = B + C

wherg A, B, and C must all be either numeric vectors or numeric
matrices. The elements of A are set to the sum of the corresponding

elements of B and C. The matrices B and C must have the same current

bounds;.the bounds of the target matrix A are changed to the bounds
of the input matrices (B and C).

Example

100 MAT X =Y + Z

220 MAT Y

X+2Z

6-5

MATRIX SUBTRACTION

Szgtax
MAT A=B-C

where A, B, and C must all be either numeric vectors or numeric
matrices. The matrix elements of A is set to the difference of

the corresponding elements B and C.
current bounds, and the bounds of A are set to the current

bounds of B and C.

E§gmple
142 MAT X =Y

MATRIX MULTIPLICATION

- Z

B and C must have the same

Matrix elements may be multiplied by scalar quantities or by elements

of another matrix.

SCALAR MULTIPLICATION

Syntax
MAT A = (E) *

B

where A and B are numeric matrices and E is a numeric scalar expres-

sion.

This form of matrix multiplication sets the matrix A to the value
of the product of each element of B times the value specified by E.

Matrices A and B must have the
bounds of A are changed to the

Exgmples
300 MAT X

320 MAT X

same number of dimensions.
current bounds of B.

5y *Y

(SQR(1-X/Y)) * B

6-6

The current

J J

DY)

PRODUCTS OF MATRICES

Syntax

MAT X = Y * Z

X, Y, and Z are numeric two-dimensional matrices.

This form of matrix multiplication sets the matrix A to products
of the matrices to the right of the =.

When two matrices are multiplied, the number of columns in the first
matrix must equal the number of rows in the second matrix; the result
is a matrix with the same number of rows as the first matrix and the
same number of columns as the second matrix.

Examples
10 DIM A (10, 10)
20 DIM B (4, 5)
30 DIM C (5, 3)
100 MAT A = B * (C

NOTE: While the statements of the form:

MAT A=A+B
MAT A=A-B

are allowed, the statement:
MAT A=A*B

causes an error when the program is rum.

6-7

TRANSPOSE OPERATIONS
Syntax
MAT A = TRN (B)

where A and B are either both numeric one-dimensional matrices or
both numeric two-dimensional matrices.

The transpose statement sets the matrix A to the transpose of matrix
B; the colums (rows) of A are the rows (colums) of B. The current
bounds of A are changed. For example, if B is dimensioned M, N, the
bounds of A are changed to N, M,
Example:

100 DIM B (5, 4)

110 MAT A = TRN (B)

Matrix Inversion

Syntax
MAT A = 1INV (B)

where A is a two-dimensional numeric matrix and B is a square two-
dimensional numeric matrix.

The matrix A is set to the inverse of B. The bounds of A are set
to the bounds of B.

Note that the statement:
A = INV(A)
is allowed by the Prime BASIC.
The determinant of the matrix may be invoked by the function DET(A)

A is a square matrix. It may be used in any arithmetic expression.

MAT READ

The MAT READ statement causes an entire matrix to be read (input).

Syntax
MAT READ Al (D1, D2) ..., An (Dn, Dn)

where Al ..., An are a list of numeric or string matrix names
separated by commas, and D1 ... Dn are dimensions of the associated
specified matrices. Specifying of dimensions D1 ... Dn are optional.

6-8

DD

D)

The MAT READ statement causes values fram the data pool starting at
the next available values, to be assigned, in order, to the matrix
elements of the matrices specified.

Enough data values are read from the data pool to fill a matrix
according to the current bounds of the matrix. If a matrix name in

the MAT READ statement is followed by a bound list, the matrix is
redimensioned to those bounds before any data is read.

Example
10 pmM A (3,5)
100 MAT READ A
200 pATA 1, 2, 3, 4, 5,6, 7, 8,9
210 DATA 10, 11, 12, 13, 14, 15
The statement at line 100 causes fifteen numbers to be read into

matrix A by colums. For example: A(l,l1) = 1; A (2,1) = 2, etc.

MAT READ FILE

The MAT READ FILE statement causes a matrix to be read fram an external
data file and assigned, in order, to the matrix elements of the matrix

specified.
Syntax
MAT READ #N, Al,..., An

where N is a file number (1-8) previously defined in a DEFINE FILE
statement, and Al,...,An is a list of matrix names.

The file N consists of an ordered list of values that defines the
contents of the elements of the matrix A. It may be created by a
previous MAT WRITE FILE statement in the same or a previously
executed program, or it may be created by the operating system
editor.

Example:
10
15
20
25
30

40

DIM V(10)

DEFINE FILE #1 = ' (PTR)'
DIM M(10, 20)

DEFINE FILE #2 = 'ARRAY'

MAT READ #1, V
MAT READ #2, M

The contents of the file #1 are read from the paper tape reader and
assigned to the elements of the vector V. The contents of the file
named ARRAY stored on the disk are read and assigned to the elements

of matrix M.

MAT READ * FILE

Same as MAT READ FILE except the statement does not force a new

record to be read. Any data remaining in a previous record are read
as elements of the matrix.

MAT WRITE FILE

The MAT WRITE FILE statements causes a matrix to be written to an

external data file.

Syntax

MAT WRITE #N, AL, ..., An

where N is a file number (1-8) previously defined in a DEFINE FILE
statement. If the output file is in ASCII (print) format, the
character following matrix names in MAT WRITE FILE statements is
used to control the spacing of the matrix elements in the output
records. A comma specifies tabbed format and a colon specifies
packed format. The optional character following the last matrix
name controls the spacing of the elements of that last matrix and
does not inhibit the termination of the last output read.

is a list of matrix names.

6-10

., An

J

D)

W

Example:
10 DEFINE FILE #1 = 'OUTPUT'

15 DIM A (100)

20 FOR K =1 TO 100
25 X = 2%3.1416

30 A(K) = X*K

40 NEXT K

50 MAT WRITE #1, A

MAT INPUT

The MAT INPUT statement causes data values to be read from the

terminal and assigned, in order, to the elements of a specified
matrix.

Szgtax
MAT INPUT Al, ..., An

where Al, ..., An is a list of matrix names separated by commas. The
type of data provided must match the type of matrix being filled.

Example
10 DIM B (5)

20 MAT INPUT B

allows information to be assigned to the elements of matrix B from
the terminal. After the ! is printed, typing:

5, 10, 15, 20, 25

assigns those values to B(1) through B(5).

6-11

MAT PRINT STATEMENT

This statement causes an entire matrix to be printed.

Syntax

MAT PRINT Al, ..., An
where Al, ..., An is a list of matrix names separated by commas or
colons.

The MAT PRINT statement causes all the elements of a matrix with
subscripts that are not 0 to be printed column by column.

If a matrix name is followed by a colon, elements are printed with
one space; otherwise, elements are printed in zoned format.

Examgle
100 DIM M(2,6)

110 MAT READ M
120 MAT PRINT M
200 DATA 1, 2, 3, 4,5, 6,7, 8,9, 10, 11, 12
400 END
The above program yields the following output:
1 2 3 4 5
6 7 8 9 10

6-12

) J

3

D)

SECTION 7
INTERFACE CONVENTIONS

BASIC differs from compiler and assembly languages because its inter-
preter does not compile or assemble a reusable object text from the
source program. Therefore, the BASIC interpreter must be present

in high speed memory each time a user program is run. However, Prime
BASIC provides the CALL statement to call FORTRAN or PMA (macro-
assembly language) subroutines. Refer to Section 5 for details of the
CALL statement format.

RELATING CALL TO SUBROUTINE

The user-supplied configuration file that is associated with the BASIC
CALL statement is a table. The entries to this table are the addresses
of PMA assembly language object text subroutines, or FORTRAN

language object text subroutines, or a combination of both PMA and
object text subroutines.

An example of two typical subroutines that may be called by a program
written in BASIC is as follows:

oe THBROUTINE TO START CLOCE
o
28
+:
ERHT STRTOE
FEL.
Ed
STRTCKE DA i
CRA
STH ¥l
i e START CLOCE
JMP STRTOE
BN
C SUBROUTINE TO GET ROAL TIME CLOCE WaRD
c
N
CUBROIITINE GETOLRCRRGS
COMMor CSLISTS LTSTOL:
o
FEG=L ISTo30 S1n
FETLIRN
N

7-1

The configuration file is produced by modifying the CALLP source

file on the MFD then assembling it.

original source of the CALLP subroutine;

The following listing is the

immediately following that,

is a listing that shows how the CALLP source was modified to call one
PMA subroutine to start the real-time clock and one FORTRAN subroutine

to get the real-time clock word.

LCELLF CEASTCLSTRANGL TR

(LR (R ERT AR TR SE8 T 8 68 SRS A A S O A A S A S
4 i
S TR, PROCE SO #
4 RS

R AT S8 T 48 1 AR A e % A 28 S AR S A e s O
e SUIBROUT INE NUMBER

ESlesZn, TS O

.

SRR
FEL

RO TR <O e 2 1

o
4
FINCERT POoron
4

B g

CRLL DA
L
#3 TS
HCIE
iz

e
e

{2 T

st e LN ETHT T

N A | ol
T ey
T Cak
JME T4
T]
JRE T
Jr
JHE e
JME g

il

Dt
et

oo DE P EILILT SUBRCLIT THE CRLL

7-2

=4 Jrr T4

IM BUF LY ARDRESS OF FARGS
CrbTHHD MUMEER OR FARGS

LD T,

o
)

I BEUFCE,

")

~

DR

N

TP
TH
THF
THF
THF

TME L T ey
Bisizd =
JIMe oAl

JME AL

= TR

U 1
P

Erars

"~

L

AT T

Ml

il 3

AT THIC

7-3

R

)

The '"Modified" CALLP follows:

CFLLEP OBERLICLATRANSLTRY 24 JAM 74

shodufefihduiiduinfe i agiafifopebe i fegodog
R o
4 R PRGCE LSO H:
B d it
F2 5% KXY R KRT CRE ER4 18 SRL SRV SN TRY SR SR BET ST ERYIRY (Y S3% rATAYP

~OFGL SUERCGUTIHD MUMBER IH BUFCLY, ARDRESS OF ARGS I BUF O3, ‘\
EHIECES, o LTINS CHE THE RURMEGER O FRGS S

I T S =

o
ofe

CELL DO dash 3
LD ol
Fafs
Riwies
B8 o T N L P

A3

e s DL RARCHIT TR L, LT T,

CEL TMP i
JHF
TRF
T
Rigis
JHE
Jrr Y
JEr Sl
JHE g

HY
shie e TR T SLIERCHIT TR N,

7-4

B

=l CALL STRTOE STHEET LR
JMP CELL FETLIRM

ey L B 41 THSURE 1 ARSLMEnT
S

Dealrd ow

NEpis (I FOT 4 ARG, EREGR
ALY GETDLE

Cofdlos BILIF -2 1 AR

JME TRl

JME (g {
2 JIME =i
o5 JHF
oG JHE
T Niuiz
i TP
o JME HLE

{
Apeeee o [PV PLEMOCHNTED SUBRCHIT INE ML
crle CRLL, R -

DA =T

END

D)

7-5

MODIFYING COMMAND FILE

The source of the modified CALLP listed above is assembled. Then, the
command file must be modified. Depending on which version of BASIC
the user desires to use, one of the following command files must be
modified:

C ¢« BASC *BASIC with no PRINT USING
OR MAT statements

C+—BUSE *BASIC with PRINT USING
statement

C «BMAT *BASIC with MAT statements

C «BALL *BASIC with both PRINT USING

and MAT statements
Any or all of the above command files are modified using the editor,
ED, as follows:
1. Locate the command line:
LOAD B< CALL
2. Insert LOAD commands for the subroutines to be called by
the program(s) written in BASIC. For example, to call
the subroutines listed in the sample modification of the
CALLP subroutine, the following statements are inserted:
LOAD B<—= STRT
LOAD B<— GTCLK
NOTE: The above 'LOAD' is a command to the PRIMOS loader;

not to be confused with the BASIC command of the same
name.

7-6

J

3 9

RUNNING PROGRAM WITH CALL STATEMENTS

After inserting the proper LOAD commands, execute the command file

and save the results. At this time, the desired version of BASIC,

the modified CALLP subroutine, and the called subroutines are loaded
as an entity so that programs written in BASIC may call the designated
subroutines. For example, the following program starts the real-time
clock and prints a clock value every 300 microseconds.

>LIST
18 CALL 1
28 =309

38 CALL 2(¢J)

4P IF l<>J GOTO 38
S8 PRINT 1,

68 I=1+300

76 GOTO 39

Sample Output:

>RUN
309 608 908 12080

1500
1800 2100 2498 2700 3000

>

7-7

S5

R
v
b}

B Y]

)
-l

e RSN B
)

]

WA

:
b

-’
R R AN

o
Ry

v~

!

AII

oy
AN

O o dal B b

1
)

)
&

L

D

APPENDIX A
SAMPLE PROGRAMS

FHOM bt EsSmmMPLE 1 gt
R

ettt PROGREAM TO CALCULATE MILES MER GALLON ARG PRINT REPORT.
FEM

Pt THIS FPROGREAM GIVES AN ExAMPLE OF HW A RS TC PRIOGREM SR READ
FEM DATAE AND DO SIMPLE CALCLLATITORS ANk JSE THE FPRIMT

FEM STATEMENT TO PRINT A REFPORT

R

et IT TS5 THTEHDEDR TO GIVWE THE WSER AW I0ER HOW EARSY IT IS TO
FEM SOLVE A PROCLEM AND WRITE /A USEFL PROGRAM WMITH JUST A FEW
FEM DRSID STATEMEMNTS

M

REM THE ORLY STATEMENTS USED ARE:

FEM READR, LET ADSIGHMENT >, PRINT. ARG DARTH

PRINT “DRTES, "ODOMETER . "MILES" . "GALLIONZ . - PG

FPEM WOM THITIALIZSING SOME WarRIABLES LISED LATER

LET Mi=0

LET MNi=
LET Gia=

£
151
LECT Kid=6
READ 1

et K I2 ODOMETER READING

LET k=

REM KL T SET TO ORIGINAL ODOMETER REAGDING

FEGD M

e oM TS ZET TGO LATER GOOMETER RPEADIMNGS

REM RIS ALSD USEDR A% 0 FUAG TO TERMINGTD Loor
HeM STRTEMENRT 148 1% ENTRY INTO LOoF

IF M= THEM 420

FEM MHEN NS 8 LOOF CONTINUES

READ @

REM I I% DATE.

READ G

NEM G IS GRLLOND USED SINCE LAST OROMETER READTHG
LET M=MN-

FEM M 12 ITHRCREMOMT OF TOTRL MILAGE

Mi=M1+M

UMY TS RUNNIMNG TOTOL OF MILES

A-1

I3 LET fA=M."0

e RN CRLCIBATION OF MILES PER GRLLCN
4316 PRINT Do M. S 5

$aa LET K=N

SGIEE REM UPDATES K TO LAST ODOMETER RERDIMNG
440 LET Gd=014+0

350 FOMOGL IS TOTEL GRLLONS LUSEDR

Al GOTD 256

S7VE REM CONTIMNUE LOOP UNTIL M = A

4o PRINT STOTAEL . 7 7ML, Gl R -1 351

3 REN MOTE USE OF 7 7, T SEIF ONE FRINT FIELD.

Se8 DETHE <
Saa DATH
S| DETA
a DATH =
DETH Zaa7T4,
DATH
AT
DATH
DRTHA &
STOr

=
ct

-
Ll

P R A

N in
DTN R
20

)
&

e g

)
hal

The following is the output from Example 1:

LOAD 'EXAMP1'

DATE ODOMETER MILES GALLONS
21574 46193 311 16.8
222174 46315 122 S.4
30174 46505 150 12.7
30874 46855 350 17.6
31574 47067 212 15.2
322174 47314 247 14.7
32974 47464 150 10.6
TOTAL 1582 S7

STOPPED AT LINE 350

MPG
18,5119
12,9787
14,9606
19.8864
13.9474
16.8027
14,1509
16.3093

J) J

B

&8 REM
IE REM THE FOLLOWING STRATEMENTS ARE A MODIFICATION OF EXAMPLE 1
8 REM IO ALLOW DATA TO BE READ
58 REM STARTEMENTS

&d REM
CEFIHEFILES 1="GASDLAT”

REM btk EMAMPLE 2 bk

FROM A FILE RATHER

THAMN DATH

o8 PRINT “DATE". “ODOMETER . “MILES”, “GRALLONS 7, "MILES-GALLOMNT

28 LET Mi=@

168 LET MNi=g
116 LET Gl=6
1283 LET Ki=u
138 LET KE=45282

146 FEM MUST SET INITIAL

VALUE OF K

8 REM OF REAC IT IM FROM AROTHER
1668 REM LISCARDED
178 LET Ki=k

153

ZE0 IF M=a THEM 24

218 LET M=H-k

226 MI=M1+M

238 LET A=MSG

240 PRINT LML MG A
256 LET k=N

25 LET Ga=0G140G

27 GOTO 126

286 FRINT CTOTAL . 7

226 STOP

REM ALL ITEMS MULT BE READ O

R REST OF RECORD

S HFRDS

FILE TO PREVENT RECORD FROM BEING

“aMd. Gl TR-KL D SGL

LISCARDED.

‘ The following is a sample of the output from Example 2. The results are
imilar to Example 1 and are included for comparison.

DI

LOAD

RUN
DATE
21574
22274
30174
30374
31574
32274
32974
TOTAL

"EXAMP2*

ODOMETER
461953
46315
46505
46855
47067
47314
47464

STOPPED AT LINE 350

MILES
311
122
150
350
212
247
150
1532

A-3

GALLONS
16.8
9.4
12.7
17.6
15.2
14.7
10.6

97

MILES/GALLON
18.5119
12.9787
14.9606
19.8864
13.9474
16.8027
14,1509
16.3093

in

-~
=

b B DY b
[

I EEORE) B AT

B
B

ST g g b
Zinaingha

(|

1 it

al

27 -
&

v

LSCLA

oam
A
Kb

FER
REM
Re M
e
RisMt
FEM
FEM
REM
<M
e
FEM
FEM
REM
REM

FolMT “PLEASE TYPE WOUER FNUMEBER: &

I ELY PRV PRV IRY AY FowfiPiFlLE 3 dubebdng

IMTEGER BETHEDMN 1 GHD Qoo
IF THE MUMERER MRS MO FRCTORS.

THAET THE MUIMBER I% PRIME
SRECTAL. CRSES

A MESSAGE 1% RETURMNED

CHECKING IS MARE FoOR SOME

THE PROGREAM SHOWZ THE WS OF GOZUE AMHD RETURN STRTEMENTS

TO PREODLUICE
M A FPROGRARN

EQTH MESTEDR AND SEQUENTIAL SUBROUTINES
IT ALY DEMONZTRATES THE USE OF THE FRINT

FIRG: THE THPUT STATEMENTS TO PROOMICE AN INTERACTIVE COM-

VERSATIONAL FPROGRAM.

IHFLIT A

LET
LET
LET
e

=1

H=1
HOITHITIALIZING FLAGS

THFUIT Ff

IF A3 e

EHE
C N
FER

IF FA=IMNTIAS

THEM 75

stk NG OF PRI PROGRAM
SUBROUTINE TO CHECK IF A
THEN 156

THIS WOUR LAST RUMEER: <

15 NOT AN INTEGER.

PRONT <HUMGER MUST BE Al TNTEGER. -
GOsle Sa
RETUREN

MEPM SUDRCIITTNEG RETURND MESSRGE I A &
IF A=C
PRINT CSOREY.

et THEMN 1E5
AT FPRESENT.

PUIMEER

DOTUE Saa
RETLRN

Bt

CUERTEITING TO HAHGLE A = 1

A-4

Lo’ Gt U Do Lo

MEty NOT ERCEEDR meeaiss -

J

B

5

125 IF A1 THEN 215

286 FRINT f: IS 1 ARG IS DIWISIBLE BY ORLY ITIZELF ARMHD 1.0 7
285 PRINT “HOWEVER. IT IS MHOT A PRIME HUMBER. -

216 GOTUE S

215 RETURMN

2268 KEM SUBROUTINE TO CHECK IF A 15
225 IF Ax=1 THEM 245

2720 PRINT “HUMEGER MAY NOT GE CITHER JERC OFR & NEGARTIWVE VWALUE. -
235 PRINT “NOUR HUMBERT A TS THRYALID. 7

248 GOolE Sod

FETURMN

et SUBRCUTINE 7O HANDLE 7 = 20 2

IF fAxZ THEN IF ms2 GOTOo 270

GOoDUE 253

(R N N = s

PETLIRM

FeM SLUBROUTING TO FRINT HERGER LINE

Y

3Ok MNEGHT IWE.

-y

i IF F=1 THEM 318
S5 IF H=G THEM 3168

FPRINT “HUMEBER /7T DIVISIBLE BY @7

FRINT

FRaamT f 7AD" 7 T

LET H=6

RETLIRM

WEM SLUBRCSUTINE THART PRINTS DIVISORS ARG SU0TIENTE.

IF =1 THEM 345

FRTINT W TR 2 7 707 7,7

IF W2 THEN 245

I35 PRINT 717, “AkD7 A

Z48 PRINT

345 RETURN

ISB REM SURROUTING 7O PRINT MEOSSAGE MHEN NUMeCR IS A PRIME
I55 IF P=@1 THEM Z74

ESE PRINET CHUMEER” F: IS A PRIME NUMEBER. 7

IS PRINT

EVE ORETLIRM

IVEONMEM PERFORM CALCULATION ARD GET ROUTINES TO PRINT RESLLTL
5 IF =8 THEM 4240

[N

]

5]
]
5
b

Il
gt

oD D
A
o’

Mmoo

AN

A-5

IeS Fi H=INTRASZ T 2 STEFR -4
A3 LET @l=F

pS LET Qe=THTOM

2 LET Re=fl -

45 GOl 325

G168 MHERT ¥

445 GODLE SaE

G RETLRNM

425 UM CRLL PRINT ROUDTINES ETC
476 IF ROHG THEN 456

435 LET P=0
S48 GoOnUR 275
445 GOSUn T8
4568 RETURN
455 KMEM SUBROUTINEG TO ENTER SPFECIAL ROUTIMNES

4G8 REM IF A IS HECGATIVE O ZerG. OF 1. 2.3 O IF A IS / FRACTION
45 GIOELIE 1463

478 GOSUE 155

475 IF AT THEM 495

S Dol 1o

G GEUE Zon
40 GOSLIE 258
395 RETURM
San PRINT
SESOLET S=i
516 RETLREM

The following is same sample output from Example 3.

LOAD 'EXAMP3'
RUN

PLEASE TYPE YOUR NUMBER: 0
NUMBER MAY NOT BE EITHER ZERO OR A NEGATIVE VALUE.

YOUR NUMBER O IS INVALID,

IS THIS YOUR LAST NUMBER: NO

PLEASE TYPE YOUR NUMBER: 1

1 IS | AND IS DIVISIBLE BY ONLY ITSELF AND 1.
HOWEVER, IT IS NOT A PRIME NUMBER.

IS THIS YOUR LAST NUMBER: NO

PLEASE TYPE YOUR NUMBER: 2
NUMBER 2 IS A PRIME NUMBER.

A-6

J

3

Sample output from Example 3 (cont)

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 4
NUMBER 4 IS DIVISIBLE BY:

4 AND 1
2 AND 2
1 AND 4

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 17
NUMBER 17 IS A PRIME NUMBER,

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 324567350123456733
SORRY, AT PRESENT, NUMBER MAY NOT EXCEED 999393.

PLEASE TYPE YOUR NUMBER: 56
NUMBER 56 1S DIVISIBLE BY:

56 AND |
28 AND 2
14 AND 4
3 AND 7
1 AND 3
4 AND 14
2 AND 28
l AND 56

IS THIS YOUR LAST NUMBER: YES
END AT LINE 239

N)

REM sebhskopg EXAMPLE 3 bt

REM

REM THIZ PROGRAM UZES THE ARRAY PROCESSING CAPABILITIES
REM OF BARASIC TG COMPUTE THE TOTAL DOLLAR YALUE OF THREE
REM FRODUCTS sSOLD BY FIVE SALESMEN

REM

REM VECTOR ELEMENT PCMY 15 THE PRICE OF THE M-TH PRODUCT.
REM MATRIX ELEMENT SJOM. MY IS THE TOTAL MNUMBER OF THE M-TH
REM FPRODUCT SOLD BY THE H-TH SALESMAN

REM

REM

DIM SlG. 45

DIM POt

T=0

MAT F= CON

MAT S= ZER

REARD FPCLX FOZ25, PO

REFD S(1, 42,541, 23, 501, 30, 502, 13, 542, 20, 52,)
R'iFLD S(}J l)) 5\:31 ZZ‘J S(:: .—:}:‘A 5‘:41 1): :-(4) 2.}‘ 5(4.0 :’;:"
READ (S, 13, 505, 23, S(5 3D

FOR I=1 TGO S

FOrR J=1 70 Z

SO, ID=PCIown I, Jo
T=5{1,I>+T

HERT J

MERT 1

FRINT

FRINT

MATPRINT S

PRINT

FRINT “TOTAL SALES =77
DATH l o, 2 54,5 49
DA 41 , 24,36, 55, 38,12, 76, 22,14, V6, 45, 12 45, 34, 23
STOR

I J

D

N 9

('"[\:'[\.:i\:ﬁ—‘v—-.—-

CIN = N = N = G DD e O N —

The following is sample output from Example 4.

60,69
6J.96
3763
12.24
96452
65.76
S8.04
53.42
16.72
93.J4
114,95
65,716
36.36
1260\)4
12.24
§U.96

36.36 J
65,76 1264904

J J

C.LQ__Z UL\ S O
L]
2}
(%8

[OTAL SALES = l225.52

STOPPED AT LINZ 3384

56,52
37.638

9-’50'\)4
53.42
65476

53435
114.3
76.72

106
11
R
138
14
156
15

-J
DA]

o}
~
H

ﬁ:.
heed
AR

SO ORI OV I (I SO S 2N
A R]
. L hy
A

-

'"J

Il
TRE
[y}

-~

C e e
YNARAES

fax}
=
~
ol

) L) B

i
5
:'A

By

FETP sdgeded ERftrLe 5 diabadas
REM

et MLTIFLE PLOT PROGRAM
FEM

REM

DEF FHF<

DEF FHGO b=
READ M, 805
FEFD DN
LET H=ole-ao M

IF MHI=50 THEM 230

FPRIMT < ey S8 SUBEDIVIGIONS ALLOMED O Y-RMIs-
ST

3EF FRRECHED=THNTORE S

FRINT W ls: FrROM 70 7TO 7D I STERS GF
FPRINT

g o

FoOR I=1 TO N3

L.i"':l‘-j"" B

HEST T

FRINT L+

FOR == TO B STCR S

LET W=FHF M

LET Wy=FHRC O -0 M
LET W=FNGY
LET Wa=FHREOOY -CoaHD
L=

Fiok I=0 70O M

IF I=%1 THEN $2a
IF I=2 THEMN 4483
L¥=l$4+7 -

GOTO 454

LE=L$4 "

GOTO 45

L¥=l_¥+" -

HEWT 1

FRINT L3+~ T
MEWT

DATA 1,18, 3

LATA -1, 1. 585

DARTA &

STOF

OO T T I

A-10

J

The following is sample output from Example 5.

-1 TO 1 IM STEFS OF <SE-82

1
1.
1.
1.
+ + 3.
4
4.
4.
4.
5.

AT FROM

3
~
O
D'

-..{
=
=
=
)
o
=
©

s

e el

¢ + ettt
" + el

[

T n,,'_‘ D

S

1 AD WD

P
!
1

59' (D'

Pt L o
e

4

3
IS B TR R Ve I

NI RN Y UN

B 4 HE N R =
4 + B A S L
§: + (= P o
$e = T o 1 b e)
¢ + L L i P
4 t D ERANg
4 + o e L e e

D)

A-11

164
116
1268
138
148
154G
1668
17
128
o
244

Ty

LAY

e

| TR Y ST TR R SR)

FEM FIBCHACT

REM
INFUT E
I=1

ot ==

FRINT I..J.
FOR K=1 TO E
F=1+J

I=J

J=F

FRINMT F,
MEXT K

END

Sample output:

EXAMPLE &
I HLIEER

12u

l 2

13 el

144 PN
1597 2534
17711 23657

cd AT LINE 2959

afigifacd
GEMERATOR.

34
3717
4131

A-12

55
6lJ
5769

35
37
10546

‘D

y

3

D)

166
1108
126
136
144
158
1668
178
183

136
283
218
<28
230
246
"/C'g
260

-
&7

286
228
384
z1a
50

330
346
3%a
360

oier]
Sy

]

S

328
466
416
1268
336
448
450
4506
4708
434
429
SEG
S1@é
S2a
S35
5449
558
Soyg
S7

Saa
526

REM skt EXAMPLE 7 bbbk
REM

Ri:M LUNAR LANDING FROGRAM

REM

PRINT

PRINT “COMIROL CALL LUMAR MODULE

PRINT “wOU MRY RESET FUEL RATE K EACH 16
FRINT “BETWEEN & & 206 LBS SEC

FRINT “FREE-FALL IMPACT TIME = 128 SECS
EE="R4H% BUHE HRBB Tt

FPRINT “FIRST RADAR CHECK COMIMNG UFP. -
PRINT
PRINT
FRINT
PRINT “COMMENCE LAMNDINMNG PROCEDURE”
PRINT
PRINT
PRINT
PRINT
L=8
H=128
W=1
M=32560
H=1&5680
G=1E-GZ=
Z=1. &
FPRINTIIS
FRINT
INPUT K
T=18
I SGHOR M2 GOTO
IF K<8 GOTO 43208
IF K{=284a GAOTO

ALTITUDE . "VELOCITY”,
MILEZ FEET”". "~ MFH~

“TIME
“SECS

IHG B3, L IMTORL INT(SZE0+ (A~

Bl B
K=

426, 458, 416

46

PRINT “HOT POS IBLE”
FRINT TAECSGD
GOTO 27g

1IF M-MNI1E-82 GOTO S76

IF T{1E-83 GOTO Zcd

o=

IV (M+% 4L,\-N GOTO 514
S= M-

Gasue 1629

IF I<=a GOTO 266

IF ¥{=8 GOTO 5506

IF J<8 GaTO 25g

GOZUR S44

GOTO 329

FiINT “FUEL OUT AT L. "SECS”

S=(-"H SR O
N=+G45

N+ 2HAEG) 3 S G

A-13

IMNTOFD

3

p

a2

MAMNUARL CONTROL
SECS
YOUVE 16868 LES
CAPSULE WEIGHT =

“FUEL (LES

3

IS HECESSAR'Y

TG 8 OR ANY VALUE~Y
FUEL. ESTIMMATED”
32568 LES”
RUHBE. HHW 7

» "FUEL RRTE”

IGEEN. M-

[2ya{s
16
t:.'...'a
l‘.;&g
T 15
]
PR s
Gkl
tv-. :fl
&
TEG
P W™
vaa
VAR
T363
TEE
TEE
s

]
o
&

o,

)

oo -

o

Mk R B S0 5

P REA R BRI A

(W)

0

A
e

€ 07 0
SRR

BRARN

1820
16336
18346
18568
RS
1879
1E8
19326
1166
1114
1126
1128

L=l+%
FrRIMT <O THE MOOM AT L 7SECS7
W=ZoaE4Y
FIINRT “IMPARCT VELCOCITY OF 7 W “MFH
FRINT “FUEL LEFT IZ7:M-M:LEZS
IF W1 GOTO &2
FRINT “PERFECT LAMGING! ™
GOTO vog
IF Wx8s GOTo 71ig
PRINT "GOO LANGINGS
GOTO VEE
IF WNxE% GAOTO 74
FRINT “FOOR LANDINGS
GOTO vEa
IF Mxad GOTO 77Fg
FRINT "CRAFT DAMAGED: GOOD LLICK 7O YOLu (kD
GOaTa 7
FIINT “FARTAL CRASH: WO SURNIVORS S
PRINT
FRINT “TRY AGARINT
IHFUT Af
IF fAE="YES GOTO 264
IF Af="NO" THEN STOF
GOTO 7o
L=L+%
T=T-5%
M= Tkl
H=1
l_.'l="r
RETILIEM
IF S{SE-83 GNTo 41
RIS R = PR NS Sord] cuE R PN N R A TR o Rl o S) S B U
SCOTUBR 1028
GOSUE 2408
GOTO 2980
W= MG TR0 2 2
SEME AT K W SOR A Y S D D A 0 BE -0
HOSUE tm'u
oM SGHCI 242 GOTO 204, 280, 23R
GAmUIE S99
i G T o
OM SGHON+2
N=%4: kM
=0
FOR Q2= T3 1 STEF -1
A= L RZ+QL
HEXT &2
J=N 4 G S DL
Hl=0
Fiik Qz=2 7O 1 STEF 1
RL=C QL+ L QIS CRZHL D00
HEXT Q2
L GG G A 2 - W S 4 D Tkl
RETIIEN

EL » 466, 456
s G, PR

b F‘n

TO 1
O 4

CA foy]

T

A-14

THE RED

KPIN

4 J

D)

Sample output from Example 7.

COMMENCE LANDING PROCEDURE

TIME
SECS

J
10
29
30
49
50
60
70
30
S0

100
119
120
139
140
159
160
170
130
159

ON THE #MOON AT 193.354 SECS
IMPACT VELOCITY OF
FUEL LEFT IS 245,219 LBS
PERFECT LANDING!

ALTITUDE
MILES FEET
129 J
199 5315
99 4223
B9 2903
79 1055
63 3959
o8 1955
47 2909
31 1929
23 1584
2y 1706
13 3399
3 1772
4 2795
2 2013
l 1429
J 2943
J 1364
9 577
0] 47

VELOCITY
MPH

36U0.0J0
3636.000
$672,000
$708.0J0
3T744,.,009
$739.000
33164030
$3524.000
S476,489
3072,94V
2637.460
2164.97V
1649.140
1031.920
452.719
347,074
164.626
50.7938
064406
15.310

« 313765 MPH

A-15

FuzL (LBS)

16000.000
16J9J30.000
16000.,000
16900,000
16000.000
16U00.,000
16000,000
1 600V.000
14900,000
12009.,000
1J9900,.000
3JIJ 000
YUV PRVINTY)
40J0,000
2J0J3,000
1600,000
10993.009

600,000

520.0J9

$20.030

FUEL RATE
K= 10
K= 13
K= 10
K= 10
K= 10
K= 10
K= 19
K= 1200
A= 1200
K= 1200
K= 1200
K= 1200
Kz 1200
K= 120
K= 140
K= 169
K= 140
Kz 138
K= 120
K= 119.4

18 KEM kst EXFAMPLE 8 bbbk
26 REM
36 KEM THIS FROGRAM SEARCHES A DATA FILE CONSISTING OF
48 REM STRING ITEMS AND RETURNS THE LINE (RECORD SEQUENCE>
58 REM HUMBER THAT DEFINES THE LOCATION OF THE STRING(S).
£G REM
78 FRINT “EWTER FILEMAME’,

&G INFUT F3
26 DEFINEFILE# 1=F%

188 PRINT “ENTER STRING®,

116 INPYT 5%

111 C=1

126 IF S£="HO MORE" THEN 258

136 RERD# 1, B

148 FOR I=1 TO LENCES)

158 IF B$="EOT" THEN 200

166 IF B$=SF THEM 230

176 IF SE=SUBCES. I, LENCSE)) THEM 230

171 C=C+1

168 MEXT I

196 IF B£<OSE THEM 130

266 FRINT S$:-NOT FOUND.

216 REWING# 1

226 GOTO 180

238 FRINT S£: FOUND AT CHARACTER POSITION”:C:”. ~

248 REWIND# 1

256 GOTO 168

268 END

Output from Example 8.

>RUN

ENTER FILENAMZ 1S0URCE
ENTER STRING !G0ORGe

GORGE FOUND AT CHARACTER POSITION 63 .
ENTZR STRING !AARDVAARK

AARDVAARK FOUND AT CHARACTER POSITION I .
ENTER STRING ISYZYGY

SYZYGY FOUND AT CHARACTER POSITION 73 .
ENTER STRING IXXXX

XXXX NOT FOUND.

ENTER STRING ADZE

ADZEZ FOUND AT CHARACTER POUSITION 10 .
ENTER STRING INO MORE

END AT LINE 269

>

A-16

J

DI

18 REM skt EXAMPLE 9 skt

12 REM
14 REM THIS PROGRAM SIMULATES AN N DIMENSIONAL ARRAY
16 REM

28 DIM V{(1066>

3@ INPUT 01, DZ2,03
118 FOR I=1 TO D1
111 FOR J=1 TO D2
112 FOR K=1 T0 03
115 Rs](I-1004D2+4(J-1>24D3I+K
128 VRO +2+4I+KT2
138 PRINT YK,
140 KNEXT K
158 FRINT
168 MEXKT J
178 FPRINT
188 MNEXT I
288 STOF

Output from Example 9.

>RUN

12, 3, 4

4 7 12 19
6 9 14 21
8 11 16 23
S 8 13 20
7 12 15 20
9 12 17 24

A-17

PTUS9 REV. 16 INTERPRETIVE BASIC

PTU 59

REV. 16 INTERPRETIVE BASIC

This document corrects and adds to The Interpretive BASIC Programmer's
Guide, Rev. B (IDRI1813).

STATEMENTS

The following replaces the description of ENTER on page 5-9.

ENTER

ENTER #
Both forms of this statement (ENTER and ENTER #) allow a nuneric'or
string variable to be entered from the teminal. In addition, a time
limit may be specified for entry, the actual time used returned, and,
for ENTER # , the user number assigned at LOGIN time is returned.

tax

ENTER time-limit, time-lim—val, variable
ENTER # user-num-var [, time-limit, timfe-lim-val, variable]

time-limit The time, in second
input.

(1-1800) , allowed for terminal

Time-1im-val The variable An which the actual time used for
input, in /seconds, is returned. If time-limit is
exceeded,/its negative, -time-limit is returned.

variable The vafiable, either numeric or string, for which a
is expected from the terminal. If no wvalue
input during the allotted time, variable is set
tg @ (numeric) or null (string).

user—-num—-var /The variable which receives the user's login number

(ENTER # only). To display this wvalue, type the
command PRINT user—-num-var.

Comments

ENTER and R # do not display prompt characters. If inputs for

these statements are to be prompted, use a PRINT 'prampt-string’
statement Prior to ENTER or ENTER # .

59 - 1 February 1979

PTU59

FUNCTIONS

The following are corrections to page 3-5a:
1. CUT$S should be CVTSS.

2. In LIN(I), if I=# then nothing happens.
ERROR MESSAGES
The table below replaces Appendix B, Error Messages.
ERROR MESSAGES

Error Run-time or Description
Code Interpretive

AD I Improper operand

AO R Memory over flow when dimensioning an array

AR I Array expected

BC Subroutine call number not used

BD I, R Matrix dimension error

BE R PRINT/WRITE error

BI R Bad input

BL I Bad line number

BP R Bad BIN DA position

BT R Bad TAB in WRITE/PRINT statement

BU R Bad unit number in WRITE statement

CE R Illegal argument in VAL function

CH I Bad operator

CN I Constant followed by left parenthesis expected

Cco R Arguments too complicated for CALL

CP I Pound sign (#) expected

CR I Carriage return (CR) expected

Ccv I Simple variable followed by equals sign (=) expected

DF R DEFINE FILE error

DM I DEFINE FILE error with mode specification

DZ R Division by zero (@)

E R WRITE # error; Driver message is printed (error is
not recoverable; BASIC marks the undefined unit)

EE I Expression expected

ES I String expression expected

EX I Exponent over flow

F R Unit referenced by I/0 statement not defined

REV. 0 5 - 2

FE

FN
FO
FP
FR

GO

IC
ID
IE
IF
II
10
IS
IT

LG
LP
LT
LU
ML

MR

— 0 HHH DX

O H O

0+ Do

— H -

pel O =0 H 0 H

H o

—

PTUS59 REV. 16 INTERPRETIVE BASIC

Format error

FOR/NEXT nesting error

Improper function name

Memory over flow when fetching packet
Improper function format

TO or STEP expected

FOR separator error

GOSUB nesting too deep
GOTO expected

Illegal constant in DIM statement
Unrecognized statement

Illegal MAT multiply

THEN or GOTO expected

Improper sign of increment in FOR statement

Integer overflow
Statement illegal after source input
Illegal temminator

Argument not greater than zero (0)
LOAD in progress

READ/INPUT list error

Line not recognized

FN function definition expected
Mixed mode

Simple variable followed by right parenthesis

expected
String variable in real expression

Illegal MARGIN statement (MARGIN value out of range)

Storage space for program exceeded
READ/INPUT # exceeds 1@** (+38)
Constant exceeds 1@8** (+38)

Index out of range in ON GOTO or ON GOSUB

WRITE # unit defined by DEFINE READ FILE

statement

Not enough right parentheses
Parenthesis nesting too deep
Not enough arguments in SUB call

READ after WRITE to non-DA unit

Real expression not allowed
Integer>32767

59 - 3

February 1979

SB

SD
SE
SF
SI

SN
SO
SQ
SS
ST

S6S

VL

WE
WP

5%

REV.

HDOXNUXWHDDOHDX

X

X H o

el e liee] x

X o o

g

PTU59

Over flow occurred

Subroutine CALL number out of range
String constant not proper here
Overflow occurred

Arithmetic overflow

Expression too complicated to evaluate
String item not allowed

Overflow occurred

Line number in BREAKON statement doesn't exist
Storage space exceeded

Argument is negative in call to SQR
Subscript out of range

No temminating quotes

Compressed source overflow
RETURN without GOSUB

Undefined FN function

Undefined string variable

Undefined variable

Second argument to VAL function invalid
WRITE error

File is read-only (WRITE PROTECT error)
READ after WRITE in non-DA file

SIN, COS, EX argument > 32767

Illegal character in exponent

Exponent over flow

Division by zero (0)

59 - 4

')

3

Y)

ABS FUNCTION 3-5

ALLOCATE 1-2

ARGUMENMT LISZT 34, 5-3

ARRAY ASSIGHMENT &-4, &-5
FARRAY ARDDITION S-S5

ARRAY BOUNDS 2-4

ARRAY DECLARATIONS 2%
FIRRAY DIMENSIONS 2-3 TO 2-S
ARRAY ELEMENT REFEREMNCES 2
ARRAY ELEMENTS 25, 2-G. 31

ARRAY IMNITIALIZATION -2 TO &-

ARRAY MULTIFLICATION &5, &6-
ARRAY HAME 2--3, 25, 26, S8,
ARRAY REDIMENSIOMNING 2-5. 4~
ARRAY REFEREMCE S--18&
ARRAY SUBTRACTION &-G
ARRAY SUBSCRIPTS 2-3, 2-5, 5~
ARRAY STORAGE 2-% TO 2-5
ARRAY VYARIABLES 23
ARKAYS 1-7,1-2.1-168.2-2 TO
SCII 3-4,4-2. 5-36
ZCIT FILES 1-5,2-2
HJR S5-G
IGNHFNT 1-12, 5-28, 5-34
H’TER 1-12. 5-28
ATH FUNCTION 35

'

,

EAZIC COMMANDT 1-&

ERATCH MODE 1-2,1-5

BIHARY COPERATORZ 3-

BLANKS 1-3,5-18, 522

BOLY OF STATEMEMNT 1- 5;1"4
BOUNDS 2-3, 2-5, 5-8., &6~1, &6-
ERERK 1-7,1-18, 5-2

BREAKFOINT S--Z

INDEX

X-1

INDEX

CALCULATOR 1-7

CALL 5-3.7-1 TO V-1
CALLF 7-1 TQ ¥-4%
CARD REARDER 5-6
CARDS 1-5

CARRIMGE RETURN 1-1 TQ 1-4,2-2,4-2,5-245, 5-35

CHARACTER OVERFLOW S5-25
CLERR COMMAND 1-10
CLOSE FILE 4~-2,5-5.5

-39
COLON SEFARATOR 4“23;5—

25, 6-11
COLUMMN &-1, 611, &-
COoLUMN MAJOR 2-3
POP‘“R q- ZJJ .:_:;-.J 2 » “29

25, 5-
COMMANG FILE 7-4, 7-5
COMMAND PROCESSOR 1-1
coM &-2 TO &-4
CONCATEHRATION 3-2
CONFIGURATION FILE S5-3, 7-2
COMNSTRANTS 3-1, 5-4

COMNTENT OF FILE 4-1

COMTEXT 2-&

CONT THUE COMMAND 1--16, 1-12
COMTROL VARIFABLE S-18
CONTROL--P 1--11

COMVERSION 31, 5-23
CONVERZATIONAL MODE 1-2, 4-1
COS FUNCTIGN 3-S5

CRD S-4G

CURRENT gOUNDS 2--5

DATA 14-S.31-%.2-1 TQ 27, 4-1, 51
OATA FILES 4-1, &--1@

OATR ITEM 4-2

DATA LIST 5-34

DRTH FOOL S5-34, 5-36, 6-3

DATA STATEMENT S-4

DATH TYPE 3-1.3-4, 5-12, 5--2¢
DATA VHLUES S-31

0

X-2

J

3

)

INDEX

DEARLLOCATE 1-2

DEBUGGING 1-7, 5-2,5-48
CECIMAL POINT 1-7.2-1.5-28
DEF 2-7,5-5

DEFAULT BOUNDS &-1

DEFAULT 1-5,1-2

DEFINE FILE 4-2,5-5,6-18
DELETE A STATEMENT 1-4,1-2
GELETING A STATEMENT 1-4
DEVICE HAMES 5-6

DEVICE SPECIFICATION 1-6
DIGIT 2-2

DIM 2-4,2-5,5-8

OISK 1-5, 4-2.5-6

DOLLAR SIGHM Z-3, 26, 5-31
Dos 1-1., 7-5

DosS-vM 1-1

£ED OR FILED 2-1.3-Z2

EOITEDR STATEMENMTS 1-3

END S-%

EMTERING BRAZIC 1-1,

ENTERIMNG STATEMENTS 1-Z

ERROR DETECTION 1-12

ERROR IDENTIFIER 1-1Z2

ERROR MESSAGES 1-12.4-2.8-1
SCAFPE SEQRUENCES Z2-2
EXECUTING A PROGRAM 1-5,1-6
ERF FUNCTION 3-S5

EXFLICITLY DEFINED S5-3

EXFRESHIONS 2-1 TQ 3-4, 4-2

EXPRESSION EVALURTION 3-2, 3-4

FILE caompAMD 1-5,1-6,1-8, 4-1
FILE EXNPRESSIONS 4-3

FILE HNUMBERS 4-2

FILE SYZTEM UZE 4-3

FILEMAME 1-5,1-3,4-1, 4-2, 5-6

X-3

INDEX

FILES 4-1 TO 4-3

FIRST LIME 1-C8.1-3

FLOATING POINT 2-1.3-1

FOR S-18, 5-21

FRACTION 2-5

FREE-FORMAT 1-3

FUNCTIONS 1-7,5-5,3-4 TO 3-7
FUNCTION REFERENCE 3-1.3-4,3--7
FUMCTION NAMES 32-4

GO 1-1
GOSUB S-14.5-37
GOTO 1-1,5-15

HALT A PROGRAM 1-7

I-0 UNIT S5-38
IDENTITY MATRIX &-2
IDN &-2 TO &-4

IF S-1%

ILLEGAL EXPRESSIONS S5-12
IMMEDIATE MODE 1-2.4-7.5-2
IMPLICIT DEFINITION 2-2.,2-5

IMNITIALIZING STORAGE 1-C
INITIALIZING HUMERIC VARIABLES 2-Z
INITIFL.XZING STRING VARIABLESZ 2-3
INFUT A STRTEMENT 1-4

INFUT DRATA 1-5

INPUT LIST S-1&

IMPUT STARATEMENT 5-18

INPUTAOUTFUT 4--1

INSERTING A STATEMENT 1-2, 1-4

INT FUMCTIOMN 3-S5
INTEGER 2-5

INTERFACE COMVENTIONS 5--3, -1
INTERPRETER 1-41,1--5,7-1

J 1

-

LANGURGE FPROCESSOR 1-2

X-4

J

N

3

INDEX

LAST LINE 1-8,1-3

LEFT ANGLE BRACKET 5-31
LEW FUNCTION =-S5

LEMNGTH OF STRING 2-3. 3-4
LET 1-2,1-4.1-7. 5-20
LETTER 2-Z2

LINE 1-1.4-2

LINE FRINTER 5-6

LIST COMMAND 1-2
LITERRLS S5-34

LOAD COMMAND 1-5, 1-6.1-8, 4-1
LOAD SWITCH 1-14

LOADING PROGRAMS 1-6
LOG FUNCTION 3-S5

LOOFR 5-18, 5-21

LOWER BOUND S5-8

LFR S5-&

MAGHETIC TAPE 1--5.5-%

MRIN PROGRAM 5-93

MANTISSR 2--1

MAT &-4,2-5,5-1,6-1 TO &-12
MAT INFUT &-11

MAT PRINT &6-11

MAT REARD &-2

MAT STHTEMENT -1 TO &-12, 7-4
MAT WRITE o-14

MATRIX 2-3 TO 2-5,6-1 TO &-12
MEMORY COMNFIGURATIONS S5-1
MERGE 1-8

MODES OF OPERATION

MT1 S5-¢&

HAMES OF VARIABLES 2-3 TO 2-6
HESTED S-18

HEW COMMAND 1-16G

HEXT S-10, 5-21

HULL PRINT LIST 5-2¢

X-5

INDEX

HULL STRIMG 2-2, 2-3, 2-6, 5-24
MUMERIC EXFRESSIONS 2-5. Z-1.3-2
HUMERIC SCALAR VARIABLES 2-2
HUMERIC ARRAYS 26, &5 TO o-&
MHIUMERIC VYALUES 2-1

HUMERIC VARIAEBLE S-24

QBJECT TEXT 7-1

OFF-LINE STORARGE 1-5

oM STATEMENT S-22

ONE DIMENSION 23 TG 2-4
OFEN FILE 4-2,5-33
OFERANDS Z-1

OFERATING MODES 1-1
OFERATORS 3-1 TO 3-4
GRDER OF Ex 1D:UTIOH 1-1,4-3
OUTFUT DATA 1-5

FAPER TAPE READER 1-&. S5-G

FAPER TAPE PUNCH 1-6, 5S-G

FAFER TAPE 1S, 1-6

PARANTHESES 3-2

FAUSE 1-12

FLUS (i MINUS IH FRINT FIELD S-29
POUND SIGH 5-28, 5-31

FPRECEDENCE 3-2

FRINY 1-1 TO 1-3, 1-7,5-23

FRINT FORMAT FIELDS S-27 TO 5-33

FRINT LIST TERMINATION S5-26

FRINT MUMERIC FORMAT FIELDS S5-27 TO S-31
FPRINT STRING FORMAT FIELDS S-31 TO 5-33
FRINT USING S-1,5-27. 74

FRINTING ZOHES S-25

FRINT (NG SPECIAL CHARACTERS 5-33
FRINTING MUMERIC EXPRESSIONS S-23
PRINTING INTEGERS 5-23

PRINTING FRACTIONS 5-23

FRINTING SCIENTIFIC FORMAT S5-24

X-6

J

N)

FRINTING STRING EXFRESSIONS
FRODUCTZ OF ARRAYS &7
FROGRAM FILES 4-1

PROGRAM STORAGE AREAR 1-ZX TO
FROGRAM STRUCTURE 1-1
FROMFT CHARARCTER S-1. 5--18
FTF 15, 5-¢

PTR 5-5

S

RANGE 2-5, 4
READ 4-2,5-
READ FILE S-35

READING FILES 1-5

RECORD 4--2,5-35

RELATIONAL EXPREZSICGNS 3-3,

LA

&

3+

N]

L

FRELATIONAL OFPERATORS 3-3. 5-16

RELATIOMNSHIF OF MNAMES 2-5
REM 1-2,5-36

REMARK 1--2

REFLLHCING A STATEMENT 1-4
RESPONZE CHARACTER S5-1

RESTARTING FROGRAM EXECUTION 1-18 TO

RESTORE S--326

RETURM S-14, 5-37

REWIMND 4-2,5-38

RIGHT ANGLE BRACKET S-31
RHD FUNCTION 3-S5

ROTHRY COMTROL SWITCH 1-11
ROUKNDING Z=-1., 5-28

ROW &6-4

RTOZ 1-1

3

INDEX

&

3

-
J
LA

RUN COMMRHD 1-4.1-6. 1-6, 12, 4—-1

RUNMING PROGRAMS 1-6

SCALAR PRODUCT OF ARRAY &-&

SCALAR VYARIABLES 2-2. 2-3. 31

SENSE SUWITCHES 1-11
SEQUENTIAL RECORDS 4-1

X-7

3

INDEX

SGH FUNCTION 25

SIGH 2-1,5-22

SIGHIFICANMT DIGIT -1

SIN FUMCTION 4-7. 3-5
SINGLE QOUTES 1--5, 5-18
SINGLE-FPRECISION 2-1
SOURCE PROGRAM 71

SOURCE STATEMENT 1-12
SOURCE FILEZ 1-5.1-8
SPACES 1-3,5-18

SFPECIAL CHARARCTERZ 1-X

SLR FUNCTION =5

START 1-11

STARTING ADOCRESS OF BASIC 1-11
STARTEMENT EDITOR 1-1
STRTEMENT SEQUENCE 1-2
STATEMENTS 4-1, 5-1 TO S-42
STATEMENT FORMAT 1-1

STATEMENT HUMBER 1--1,1-2,1-4,1-7, 5-Z2

STEP 5-18

STOFP 1-1@, 522

STORMGE OF STRTEMENTSZ 1-X3

STORAGE ALLOCHTION 2-5

STRING OFERATOR 322

STRING EAFPRESSIONS Z-1 TO 3-Z3
STRING SCALAR VARIABLES Z-3
STRING FARKRAYS &-6

STRING 1-7. 22, 2-3, 26, 3-2 TO 3-4
STRING VALUESZ 2-2

STRING COMSTANT 1--8, 2-2

STRING WARIABLE S-—-2Z6

STRUCTURE OF A BRZIC PROGRAM 1-1
SUE FUNCTION 3-S5

SUBROUTINE IMTERFACE 7-1 TO 7-&
SUBROUTINE S-2, 5- 14, S-37. 71 TO ?-¢€
SUBSCRIFTES S-26, G-

SUBSCRIFT EAPRESSIGNS 2%, 514
SUMMARY OF PROGRAM EDITING 1-4

X-8

-

J) J

b

3

INDEX

SYMEBOLIC DEVICE 1-6

SYSTEM RESFOMNSES 4-1

SYSTEM EDITOR 32, v-5
SYSTEM COMMANRDS 1-2

SYSTEM FUNCTIGHS Z-4 TO 3-5

TG CHARACTERS S-18

THE REQUEST S-25

TrM FUMCTION 3-5

TELETYE 1-1.,1-5.1-2,4-1, 4-2, 546, 518
5-23, 525, 5-35, 541, %18

TO S5-149

TRACE 5-32

TRAMSPOZE OFERATIONS -2

TRH &8

TRUTH VALUE S-1é&. S-17

TWO DIMENSION 2-Z TO 25

TYPESZ OF DRTA 2-1

UFD 1-S.1-¢

UtifRY OFERATORS 3-1
UHDECLARED 25

UFFER BOUMND S-3

USER FILE DIRECTORY 4-%5.1-6
USER-DEFINED FUNCTIOHS 37

Vo111

VARIHBLES 17, 1-%, 118, 2-2 TO
VECTOR 2-3, 58, 6-1, &8
VERTICAL. ARROW 2--2.5--22

)
o
0
L}

WRITE 4-2, 548
NRITE USING S5-42
WRITING FILES 1-

in

ZER &2 TO &-%
ZOHESZ S-25

X-9

D)

D)

System Commands :

CHAIN 'GAMMA'
CLEAR

CONT INUE

FILE 'PNAME'

FILE 'PNAME', 1000, 1999
LIST

LIST 1000, 1999
LOAD 'ALPHA'

LOAD 'BETA', 1000
NEW

QUIT

RUN

RUN 45

Control Statements:

CALL 1
CALL 5 (A3, 6, I-2)
CHAIN 'PROGP2'

END

FOR A4 = 50, -4.5, -1.2
FOR Cl =2, 10, 1

FOR Cl = 2 TO STEP 1

GO SUB 30

GO TO 50

IF C11 GO TO 40

APPENDIX C

BASIC SUMMARY

IF D4 = 'ANY' THEN 50

IF X =5THEN Z = 3

NEXT A4

ON (I-1) GO TO 10, 20, 60

GOSUB
-ON ERROR #U GO TO 40
STOP

Definition Statements:

B$ = '0001"
LET 13=SIN(K-4.5)+Q3
LET S$(J+5) = M$+D$+'.00"

C-1

Input/Output Statements:

CLOSE Ul
DATA 2,3,4, - 3.7E2
DEFINE FILE #3 ='TEST 3'
DEFINE FILE #(1+3) ='(LPR)"
ENTER #U,T1,T2,X

ENTER #U,T1,T2,A$

ENTER #U

ENTER T1,T2,X

ENTER T1,T2,A$

INPUT 13, I1, X(1-3)

INPUT LINE A$

MARGIN N

ON END #1 GO TO 999

PRINT X4, 'FEET'

PRINT USING F$, X1, X4
READ Al, A2, A3

READ #3, Al, A2, A3

READ LINE #U A$

RESTORE

REWIND #3

WRITE #3, X4, 'FEET'
WRITE USING F$, #3, X1, X4

Specification Statements:

BREAK OFF

BREAK OFF 10,40

BREAK ON 40,318,215,10

DEF FNX(*) = 2/COS(*) *3
DIM A (3), B (40,3)

REM Comment Line

TRACE OFF

TRACE ON

BASIC SUMMARY (Cont'd)

Matrix Statements:

MAT X = ZER

MAT X = CON

MAT X = 1IDN

MAT X = Y + Z

MAT X = Y - Z

MAT X = 4 *

MAT X = (5) *Y
MAT X = TRN (Y)
MAT X = 1INV (Y)
MAT READ X, Y, Z
MAT READ #N,X, Y, Z
MAT WRITE #N,X, Y, Z
MAT INPUT X, Y, Z
MAT PRINT X, Y, Z

Formatted Print Descriptors:

Replace with Digit
Insert Dec. Point

s Insert comma if needed

444 Insert exponent field

+ Insert (+) or (-)

- Insert (SP) or (-)

++ Insert leading (+) or (-)
-- Insert leading (SP) or (-)
$ Insert dollar sign

$$ Insert leading dollar sign

Arithmetic Operators:

ADD
SUB
MUL
DIV
EXPON

>N %+

Relational Operators:

< LT
> .GT
= .EQ
<= .LE
=<

>=

=> .GE
<> .NE

C-2

String Operator:

+ Concatenation

Functions:

ABS(X)
ACS(X)
ASN(X)
ATN(X)

COS (X)
CUT$$ (A$,1)
DATE$
DEG(X)

DET (A)

EXP (X)
INDEX (A$,B$)
INT (X)
LEN(X$)
LIN(¥)
LOG(X)

RAD (X)

RND (X)
SGN(X)
SIN(X)

SQR (X)
SPA(I)

STR$ (X)
SUB(X$,Y,Z)
TAB(I)
TAN(X)
TIMES$

VAL (A$)

VAL (A$,I)

J

D)

APPENDIX D
'NUMBER' - UTILITY TO
NUMBER OR RE-NUMBER BASIC

PROGRAMS

PROGRAM DESCRIPTION

NUMBER is a FORTRAN program that reads a BASIC program and either
numbers or re-numbers its statements.

NUMBER is invoked as an external command by typing:
NUMBER

The program, NUMBER, then responds:
PARAMETERS

The parameters that may be specified are:

IFILE - input file name (first 6 characters)

OFILE - output file name (first 6 characters)

START - starting statement number (Decimal 1 < START < 9999)
INCR - statement mumber increment (Decimal 1 <INCR < 79999)

The parameters, OFILE, START, and INCR are optional. However, if INCR
is specified, START must be specified also. If OFILE is omitted, the
output is placed in IFILE. If START and INCR are both omitted, their
value is 1. If INCR alone is omitted, its value is 1.

The input file specified by IFILE can be either a completely numbered
file or a partially numbered file. If every statement has a statement
number, the file is re-numbered in the order of statement numbers of the
input file. For example, if the input file contained the following
statements:

D-1

19 DIM ACY,9)
12 MAT Az Zir
SJ Wlz=J
35 W2=U
50 FOR K=l TO 7
§J FOR I=1 TO 3
73 1OR J=I-1 TO 3
3) IF dJd<z1 THed 99
9J GO0LUB 299
95 JeXxT J
11O JEXT 1
129 HNaXT K
139 MATPRINT A
139 STOP

and the following sequence of command lines is initiated

NUMBER

user types

PARAMETERS

system responds

INMAT OUTMAT 10 10

user types

where INMAT is the input file, OUTMAT is the output file, the starting
statement number is 10, and increment is 10. The output becomes:

19 DIM A(S,9)

29 MAT A=z ZER

3J) Nl=J

49 W2:=0

50 FOR K=1 1U 7
6V FOR I=1 10 3
70 rF0OR J=I-1 TO 3
30 IF Jd<zl Tied 1J9
SV GO05UB 29I

130 JdeXT J

119 NEXT I

120 WeXT K«

139 MATPRLINT A

149 STOP

D-2

J

2

DI

The input file specified by IFILE can be only partially numbered,
NUMBER nunbers statements in this type of file in the order of their
occurrence. In the following example, the file is sequential and
only the referenced lines contain numbers.

FEM TEST OF THE HUMEBER FPROGRFAM
REM OBRJECT IS TO SEE HGW A FPARTIALLY MUMBERED FROGRAM IS HAMNDLED
REM

18 IHFUT KN

PRIYMNT “I% THIZ THE ERQD

ITHFLUT MNE

IF RE ="ERDC THEM 202

oOSUD Sag

o T 19

R PRIHT O CTHIS TS THE LIWING ERND 7
EHD

FREM it BEGIN SUERDUUTIHES, $dudban
s LET 2 = MWK T 2

Wo= M

o o= HSZ

(R v g

FRTHT M ek, G50 Y W

FEINT

S RETLRN

g

The results of the interaction

NUMBER
PARAMETERS
PTESIN 2 2

are as follows:

o EM TEST OF THE NUMBCR PROGREM. o
4 FEM NRJECT IS TO SED HOW A PARTIALLY MIMBERED FPROGRAM IS HANKDLED.
e REM

o INPUT M

146 PRINT 1% THIS THE EMNDT

1.2 THPUT MNE

14 IF MHE="ENDT THEN 24

e GOSUE 205G -

18 GOTO @

FRIMNT “THIS I35 THE LIWING EHD

EHG

MM et REG TR GUBERGUT THES, $dvkadk

LET #HaN"2

Iyte= g

TE =S

TE O OD=SORIHD

T34 PRIMNT R ek, G0 e

I35 PRINT

0 RETLURH D-3

Note that statements are numbered by NUMBER using only as many
digits as required. Thus, '599' in the above example becomes '38'.

When the NUMBER program completes execution, the input file, IFILE, is
closed; and the output file, OFILE, is also closed if it was opened.

ERROR MESSAGES
Messages

BAD PARAMETERS

XXXXXX NOT FOUND

XXXX DUP LINE NUMBER

INPUT FILE NULL

MEMORY OVERFLOW

LINE NUMBER OVERFLOW

D-4

Remarks

If either START or INCR are
specified with more than 4
digits, NUMBER requests a
new parameter line.

The specified IFILE does
not exist. Control returns
to DOS.

XXXX occurs as a line number
more than once. Control
returns to DOS.

The specified IFILE is empty.
Control returns to DOS.

There is not enough memory
to contain a map of line
numbers. Control returns to
DOS.

A new line number 9999.
Control returns to DOS.

J

3

)

D

APPENDIX E

MEMORY REQUIREMENTS

Memory
Resident DOS DOS-W
System CONTROL CONTROL
INTERPRETER INTERPRETER INTERPRETER]r- INTERPRETER
and and and " and *
Q
I0CS 10CS 10CS &E) 10CS
T VIP T T __er_“\‘__ o =N
VP 3 VIP
b — — e —_— e] b e = — e BN
>
Tables, Tables, Work intuiuiuiale A e
Work Areas, Areas, Etc. %
Etc. Tables, Tables,
DOS Work Areas, 2 Work Areas,
5.4K Etc. E Etc.
o
16K >
F¥4
MINIMUM 3
ST |
DOS 6.6K l
32K v 32K
MAXTMUM
“SYSTEM

*See Tables on
Page E-2 for
memory
allocation

E-1

Single Double
Precision Precision
BASIC BASIC

BASIC 7.2K k&

BASIC with

PRINT USING 8.CK *x

BASIC with

MATRIX 8.2K *k

BASIC with

PRINT USING 10.2K k%

& MATRIX
Interpreter and IOCS Memory
Allocation
High Speed and Memory Memory
Floating Point Required Required
Arithmetic Single-Prec. Double-Prec.
Neither 850 wds. *%

High Speed
Arith. only 640 wds. k&
High Speed §
Floating Point 0 wds. &

VIP (Virtual Instruction Package)

Memory Requirements

** to be supplied when double precision is

available.

E-2

'J

J J

D)

Function

Memory Required

Fixed Table

700 words (single prec.)

1300 words (Double prec.)

Program APPROX. 1 Word/2 char.

Storage

STATEMENT 2 Words/Statement Index

Packet String values

Storage and FOR-NEXT loop
parameters

Array Dependent upon size.

Storage

Memory Allocations for
Tables, Work Areas, etc.

E-3

3

D)

INDEX

ABS(X) 3-5

ABSOLUTE VALUE FUNCTION 3-5
ACCURACY 2-1A

AD B-1

ADDITION 3-1

AO B-1

AR B-1

ARCTANGENT 3-5

ARCTANGENT FUNCTION 3-5
ARGUMENT 3-4

ARGUMENT LIST 3-4

ARGUMENT: USER DEFINED FUNCTION 3-7
ARITHMETIC DATA POOL S-36
ARITHMETIC OPERATORS 3-1
ARITHMETIC VARIABLE 5-19
ARRAY 1-7,2-1A,2-3 - 2-6,5-8,5-20,6-1
ARRAY ADDITION 6-5

ARRAY ASSIGNMENTS 6-5

ARRAY BOUNDS 2-5

ARRAY CONSTANTS 6-2

ARRAY DATA TYPE 2-3

ARRAY DECLARATION 2-4

ARRAY ODIMENSIONS WITH REDIMENSIONING 6-3
ARRAY DIMENSIONS 2-5,2-6
ARRAY ELEMENT REFERENCE -5
ARRAY ELEMENTS 2-3,5-19,6-2
ARRAY MANIPULATION STATEMENTS S-1,6-1
ARRAY MULTIPLICATION 6-6
ARRAY NAME 2-3

ARRAY REDIMENSIONING 2-5,6-1
ARRAY STATEMENTS 6-1

ARRAY STORAGE 2-3

ARRAY STORAGE ALLOCATION 2-5
ARRAY SUBSCRIPT 2-3,2-5,2-6
ARRAY SUBTRACTION 6-5

ARRAY VARIABLES 2-3

ASC 5-6A

ASC SEP S-6AA

ASCII 2‘213’415'6A15‘36
ASCII FILE 4-2

ASR 5-6

ASSEMBLY LANGUAGE 5-3,7-1
ASSIGNED 6-1

ATN(X) 3-5

BASE E 3-5

BASIC 1-1

BASIC FILE 4-1

BASIC LANGUAGE INTERPRETER 1-1.,2-4

I-1

INDEX

BASIC PROGRAM 1-1
BASIC 5-6A

BATCH MODE 1-2,1-5 = 1-67
80 B8-1

BE B-1

BIN S-6A

BIN DA 5“715’2215‘41
BINARY FILE 5-6A
BINARY OPERATOR 3-1
BL B-1

BLANKS 1-3

BOUNDS 2-3,2-5

8P B-1

BREAK 5-2

BREAK STAT MENT 1-7
BREAKPOINTS 5-2

BU B-1

CALL STATEMENT 5-72,7-1
CALLP SOURCE 7-2

CARD READER S5-6A

CARDS 1-5,5-6

CARRIAGE RETURN 1-2,1-3
CH B-1

CHARACTER ORDERING 3-¢
CHARACTER OVERFLOW 5-25
CLEAR COMMAND 1-10

CLOSED FILE &4-2

CN B-1

COLON SEPARATOR 5-25
COLUMN O 6-1

COLUMN MAJOR 2-3

COMMA 2‘314'215‘29

COMMA SEPARATOR 5-25
COMMAND 1-1,1-8

COMMAND FORMAT 1-5 = 1-12
COMMAND PROCESSOR 1-1
COMMAND SYNTAX 1-8 - 1-12
CCMPARISON OF STRINGS 3-4
COMPILER 7-1

CON 6-2,

CONFIGURATION FILE 7-1,7-2
CONSTANTS 2-1. 2-1A
CONTENTS OF FILE 4-1
CONTEXT ERROR 1-1¢
CONTINUE COMMAND 1-10
CONTROL VARIABLE 5-9,5-20
CONTROL-C 1-11

CONTROL-P 1-11
CONVERSATIONAL MODE 1-2 - 1-4,1-6A,4-1

1-2

J

D)

INDEX

CONVERSION 3-1

CO0S(x) 3-5

COSINE FUNCTION 3-5

Cp B-1

CR B-1

CURRENT BOUNDS 6-1,6-2
cv B-1

DAM FILE 5-7

DATA 1-5,4-1,5-4

DATA FILES 4-1

DATA LIST POINTER 5-36

DATA FOOL 5-4,5-34,5-36,6-9
DATA STATEMENT 5-34

DATA TYPE: ARRAY 2-3

DATA TYPES 2-1 - 2-6,3-4,5-17
DEBUGGING 1-7,5-40

DECIMAL POINT 1-7,2-1,5-28
DECIMAL POINT HANDLING 1-7
DEF STATEMENT 3-7,5-5

DEFAULT ARRAY BOUNDS 2-5
DEFAULT ASSIGNED VALUE 5-19
DEFAULY VALUE 5-19

DEFINE FILE STATEMENT 4-2,5-6,5-35
DEFINE READ FILE STATEMENT 4-2,5-6
DEFINING NUMERIC FIELDS S-27
DEFINING STRING FIELDS 5-27
DELETING A STATEMENT 1-4
DELIMITERS 1-5

DEVICE 1-5,1-6+,1-9,4-1,5-6
DEVICE IDENTIFIER 5-6,5-6A
DEVICE NAME 1-5,4-2,5-6

OF B-1

DIM STATEMENT 2-4,2-5,5-8,6-1
DIMENSIONS 2-3

DISK 1-5

DISK FILE 5-6A,5-38

DIVISION 3-1

oM B-1

DOLLAR SIGN 2-3,5-31

poOsS 1-11

pCsS/vM 1-11

DOUBLE PRECISION 2-1,2-1A,5-1

E B=-¢

EDITOR 1-3,3-1,4-1

EE B8-1

ELEMENT 2-3,6-1,6-2
ELEMENT: ARRAY 2-3

END OF FILE 5-21

I-3

INDEX

END CF PRUGGRAM S5-¢

END STATEMENT 5-9,5-39

ENTERING BASIC 1-1,1-2

EQUAL 3-2

EQUAL PRECEDENCE 3-1

ERASE CHARACTFR 1-3

FRROR MESSAGES 1-12,B-1,B-2

ERROR: CONTEXT 1-12

ERROR: EXECUTION 1-12,B-1,B-¢
ERROR: SOURCE 1-12,B-1,B-2

ERROR: SYNTAX 1-12

ERRORS 1-12,8-1,B-2

ES B-1

ESCAPE CONVENTION 3-1

EVALUATION 3-1,3-3

EVALUATION: FUNCTION REFERENCE 3-4
EVALUATION: OF EXPRESSION 3-1
EVALUATION: OF RELATIONAL EXPRESSIONS 3-1
EX B-1

EXECUTING A PROGRAM 1-5

EXECUTION 1-1,1-3,1-5

EXECUTION ERRORS 1-12,8-1,B-2
EXP(X) 3-5

EXPONENT 2-1,2-1A,3-7

EXPONENT FI1ELD 2-1

EXPONENT FUNCTION 3-5

EXPRESSION EVALUATION 3-1
EXPRESSION: IN FUNCTION REFERENCE 3-7
EXPRESS10ONS 3-1 - 3-7,5-5
EXPRESSIONS: FILE 4-3

F B-2

FALSE 5-15

FE B-1

FILE 1-5,1-6,1-9,4~-1 - 4-3,5-39
FILE COMMAND 1-5,1-8,1-9,4-1
FILE CONTENTS 4-1

FILE EXPRESSIONS 4-3

FILE MODES 5-6A

FILE NUMBERS 4-2,5-41

FILE UNIT 5-22

FILE UNIT NUMBERS 5-6
FILENAMES 1-5,4-2,5-6

FILES CLOSED 5-39

FILES OPENED 5-39

FIXED LENGTH RECORDS 5-7
FLOATING POINT 2-1,2-1A,3-1
FLOATING POINT ARITHMETIC 3-1
FLOATING POINT NUMBER 2-1

FM B-1

I-4

J

b

INDEX

FN B-1

FO B-1

FOR 5-20

FOR STATEMENT 5-10

FOR=-NEXT LOOP 5-20

FORMAT 1-1

FORMAT FIELDS 5-27

FORMATTED OUTPUT STRINGS 5-42
FORMATTED PRINT~-STATEMENT 5-27
FORTRAN S-3,7-1

FP B-1

FRACTIONAL SUBSCRIPTS 2-6
FRACTIONS 5-23

FT B-2

FUNCTION 1-7,5-5

FUNCTION NAME 3-4

FUNCTION PARAMETER 5-5
FUNCTION REFERENCE EVALUATION 3-4
FUNCTION REFERENCE 3-4,3-7
FUNCTIONS 3-1,3-4 - 3-7

GO (ERROR MESSAGE) B-2

6o 1-1
GOSuB 5-13
GOTO 5-14

GREATER THAN 3-2

GREATER THAN UR EQUAL 3-2
GREATEST INTEGER 3-5

GT B-2

1/0 UNIT S-38

1¢ B-?

1D B-¢

IDN 6-2

IE B-2

IF STATEMENT 5-15,5-14
IMMEDIATE MODE 1-2,1-7,1-%¢
INITIAL LOAD 1-6
INITIALIZATION OF SCALAR VARIABLES 2-°2
INITIALIZATION STATEMENTS 6-2
INPUT 5-17,5-18

INPUT OF STATEMENT 1-4

INPUT TO BASIC PROGRAMS 5-6A
INPUT/OUTPUT 4-1

INPUT/OUTPUT STATEMENTS 4-1
INSERTING A STATEMENT 1-4
INT(X) 3-5

INTEGER FUNCTION 3-5

INTEGERS 2-1,5-23

INTERNAL SUBROUTINE 5-13

I-5

INDEX

INTERPRETER 1-1,7-1

INVOKING BASIC (SEE ENTERING BASIC)
10 B-2

I0CS 5-6A

1s B=2¢

17 B-2

KILL CHARACTER 1-3

LANGUAGE 1-1

LANGUAGE INTERPRETER 1-1
LANGUAGE PROCESSOR 1-1.5%-1
LEAST INTEGER 3-5

LEFT ANGLE BRACKET 5-31
LENCAS) 3-S5

LENGTH FUNCTION 3-5

LENGTH OF FILF RECORD 4-2
LENGTH OF STRING 2-2,2-3,3-5
LESS THAN 3-2

LESS THAN OR FQUAL 3-2

LET 5-10

LG B-?

LINE 1-1

LINE LENGTH 1-1

LINE NUMBER (SEE STATEMENT NUMBER)
LINE PRINTER 5-6,5-6A

LINE SIZE 2-2

LIST COMMAND 1-9

LITERALS 5-34

LOAD COMMAND 1-5,1-8,7-7
LOADING 1-5%

LOADING A PROGRAM 1-4
LOG(Xx) 3-5

LOGARITH™M FUNCTION 3-5
LOGICAL FILE NUMBER 4-2
LOGICAL FILE UNIT 5-6
LOGICAL UNIT S5-21

LOOP 5-10

LT B-2

MAGNETIC TAPE #1 5-6A

MAGNETIC TAPE H2 S5-6A

MAGNETIC TAPE #3 5-6A

MAGNETIC TAPE H&4& 5-6A

MAGNETIC TAPE 1-5,5-64

MANTISSA 2-1A

MAT DIMENSION IMPROPER FORMAT B-1
MAT INPUT STATEMENT 6-11

MAT PRINT STATEMENT 6-12

MAT READ FILE STATEMENT 6-9

I-6

J

J

D)

INDEX

MAT READ STATEMENT 6-8,6-9

MAT STATEMENTS 2-5,5-1,5-8,6-1,6-2
MAT WRITE FILE 6-10

MAT...CON 6-3

MAT...IDN 6-3

MAT...2ER 6-3

MATRICES 6-1,6-3,6~7

MATRIX 2-3,2-5

MATRIX ADDITION 6-5

MATRIX ADDITION 6-5

MATRIX ASSIGNMENTS 6-5

MATRIX ASSIGNMENTS 6-5

MATRIX BOUNDS 2-5

MATRIX BOUNDS 2-5

MATRIX CONSTANTS 6-2

MATRIX CONSTANTS 6-2

MATRIX DATA TYPE 2-3

MATRIX DATA TYPE 2-3

MATRIX DECLARATION 2-4

MATRIX DECLARATION 2-4

MATRIX DIMENSIONS 2-5,2-6

MATRIX DIMENSIONS WITH REDIMENSIONING 6-3
MATRIX DIMENSIONS 2-5,2-6

MATRIX DIMENSIONS WITH REDIMENSIONING 6-3
MATRIX ELEMENT REFERENCE 2-5
MATRIX ELEMENT REFERENCE 2-5
MATRIX ELEMENTS 2-3,5-19,6-2
MATRIX ELEMENTS 2-3,5-19,6-2
MATRIX MANIPULATION STATEMENTS 5-1,6-1
MATRIX MANIPULATION STATEMENTS 5-1,6-1
MATRIX MULTIPLICATION 6-6

MATRIX MULTIPLICATION 6-6

MATRIX NAME 2-3

MATRIX NAME 2-3

MATRIX REDIMENSIONING 2-5,6-1
MATRIX REDIMENSIONING 2-5,6-1
MATRIX STATEMENTS 6-1

MATRIX STATEMENTS 6-1

MATRIX STORAGE 2-3

MATRIX STORAGE 2-3

MATRIX STORAGE ALLOCATION 2-5
MATRIX STORAGE ALLOCATION 2-5
MATRIX SUBSCRIPT 2-3,2-5,2-6
MATRIX SUBSCRIPT 2-3,2-5,2-6
MATRIX SUBTRACTION 6-5

MATRIX SUBTRACTION 6-5

MATRIX VARIABLES 2-3

MATRIX VARIABLES 2-3

MAXIMUM STRING LENGTH 2-2

MEMORY 2-2,5-1

I-7

INDEX

MEMORY MAPPING 5-1
MEMORY S1ZES 5-1
MIXED DATA 3-¢

ML B-?2
MM B-2
MODE CF

FILE 5-6

MODES OF OPERATION 1-1,1-2

MR B-2
MS B-¢

MULTI-WAY BRANCH 5-21
MULTIPLE DOLLAR SIGNS 5-31
MULTIPLICATION 3-1

NAME OF

NAMES 2-

NATURAL

USER DEFINED FUNCTION 3-7
202’312‘6
LOGARITHM 3-5

NESTED 5-10

NEw COMMAND 1-10
NEXT 5-20

NEXT STATEMENT S5-1C
NON=-LOCAL 5-14

NOT EQUAL 3-2

NULL STRING 2-3,5-19

NUMERIC
NUMERIC
NUMERIC
NUMERIC
NUMERIC
NUMERIC
NUMERPIC
NUMERIC
NUMERIC
NUMERIC

0 RB-2
on 5-21

ARRAY 2-5

CONSTANT 2-1,5-4

EXPRESSION 3-1,3-2,5-15,5-23
FIELDS 5-2§&

OPERAND 3-1

SCALAR EXPRESSION 6-6

SCALAR VARIABLES 2-2,2-3

TO STRING CONVERSION 3-1
VALUES 2-1,2-1A

VARIABLE 5-19

ON END 5-21,5-22
ONE-DIMENSION 2-3
OPEN FILE 4-2,5-6

OFERAND

3-1

OPERATING MODES 1-1,1-2
OPERATING SYSTEM 1-1,1-3,1-8
OPERATOR 3-1

ORDER OF ARRAY 2-3

ORIGINAL BOUNDS 6-1

OUTPUT DEVICE 1-9

oV B=-2

P B-2

PAPER TAPE 1-5

J

J

D

INDEX

PAPER TAPE READER PUNCH 5-6A
PARENTHESES 3-1,5-6

PARENTHESES: IN EXPRESSION 3-1
PARTIAL LINE 5-25

PLUS OR MINUS SIGNS 5-29

PMA 7-1

PN B-2

PO B-2

POSITION STATEMENT S5-7,5-22
POUND SIGN 5-28,5-31

POWER 3-5

PR B-2

PRECEDENCE 3-1

PRINT ELEMENT 5-41

PRINT STATEMENT 1-3,5-23

PRINT USING STATEMENT S5-1,5-27
PRINTING NUMERIC STATEMENTS 5-23
PRINTING SPECIAL CHARACTERS 5-33
PRINTING STRING EXPRESSIONS 5-24
PRODUCTS OF ARRAYS 6-7

PROGRAM 1-1

PROGRAM FILES 4-1

PROGRAM STORAGE AREA 1-3,1-6,1-7
PROGRAM STRUCTURE 1-1 - 1-12
PROMPT 1-1

PROMPT CHARACTER,! 5-17

PTR/P 5-6
QUIT 1-11
R B=-2

RADIANS 3-5

RANDO™M NUMBER 3-S5

RANDOM NUMBER GENERATOR 3-5
RANGE OF DIMENSION 2-%

RANGE OF FILE NUMBER 4-2
RANGE OF NUMERIC VALUES 2-1A
RE B-2

READ AN,L1,...,LN 5-35

READ * FILE 5-36

READ AFTER WRITE CHECK S-41
READ FILE 5-35

READ STATEMENT 4-2,5-4,5-34
READING 5-6

RECORD 4-1,5-22

RECORD NUMBER 5-~2°2

RECORD SI17ZE 5-7
REDIMENSIONED 5-8
REDIMENSIONING 2-5S

REFERENCE TO ARRAY ELEMFENT 2-5

I-9

INDEX

REFERENCE: FUNCTION 3-4
RELATING CALL TO SUBROUTINE 7-1
RELATIONAL EXPRESSION 3-1,3-2,5-15
RELAYIONAL OPERATORS 3-2
RELOCATION CONSTANT 1-8

REM 5-36

REMARK 5-36

REPLACING A STATEMENT 1-4
RESTARTING 1-11

RESTARTING BASIC 1-11
RESTARTING FROM DOS 1-11
RESTARTING FROM DOS/VM 1-11
RESTORE # 5-35%

RESTORE % 5-36

RESTORE 5-34,5-36

RETURN STATEMENT 5-13,5-26
REWIND STATEMENT 4-2,5-38,5-41
RI B-2

RIGHT ANGLE BRACKET 5-32

RND(X) 3-5

ROUNDING 3-6

ROW 0 6-1

ROW 6-7

RULES OF PRECEDENCE 3-1

RUN COMMAND 1-5,1-56,1-9

RUNNING A PROGRAM 1-6

RUNNING PROGRAM WITH CALL STATEMENTS 7-7

SC B=2

SCALAR MULTIPLICATION 6-6
SCALAR VARIABLES 2-2,5-19
SCIENTIFIC FORMAT 5-24

SE B-2

SECOND 6-7

SENSE SWITCH 1-11

SF B=2

SGN(Xx) 3-5

SI B-¢

SIGN 2-1

SIGN CHARACTER 5-23

SIGN FUNCTION 3-5

SIGNED DECIMAL 2-1
SIGNIFICANT DIGIT 2-1
SIN(X) 3-5

SINE FUNCTION 3-5

SINGLF PRECISION 2-1,2-1A
SINGLE QUOTES 1-5,1-6,2-2,5-17
SM B-2

SN B-2

SOURCE ERRORS 1-12.,B-1,8-2

I-10

J

D)

SOURCE FIL
SPACE 5-25

E 1-5,1-6

INDEX

SPECIAL CHARACTERS 1-3,5-27

SQ B-¢
SQR(X) 3-5

SQUARE ROOT FUNCTION 3-5

SS B-2

ST B-2¢
START 1002
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STATEMENT
STEP 5-10
STOP 5-39
STORAGE 1-

1-11

1-1 - 1-2,1-8,5-1 = 5-42

BODY 1-3

DELETION 1-

4

EXECUTION 1-1

FORMAT 1-1
INPUT 1-4

INSERTION 1-4

NUMBER 1-1

= 1-3,1-6,1-7

REPLACEMENT 1-4

TERMINATOR

3:6‘1

(SEE CARRIAGE RETURN)

STORAGE ALLOCATION 2-5
STORAGE OF ARRAYS 2-3,2-4
STCRAGE OF STATEMENTS 1-3

STRING 2-2

12’3

STRING ARRAY 2-5

STRING COMPARISON 3-4

STRING CONSTANT 2-2,5-4

STRING DATA POOL 5-36

STRING EXP
STRING FIE

STRING LENGTH 2-2,3-4

STRING OPE
STRING OPE

RESSION 3-1,3-2,5-3,5-15,5-23

LDS 5-31

RANDS 3-1
RATHR 3-1

STRING SCALAR VARIABLES 2-3
STRING TO NUMERIC CONVERSION 2 3-1

STRING VALUES 2-2,3-4

STRING VARIABLE NAME 2-3

STRING VARIABLE 5-19

SUB(A$,1,J
SUBROUTINE

) 3-5
5-3

SUBROUTINE IDENTIFIER 5-3
2‘312'512‘615-19

ARRAY ELEMENTS 5-19
EXPRESSION 2-5,5-17,5-34

SUBSCRIPT
SUBSCRIPT
SUBSCRIPT
SUBSCRIPT
SUBSTRING
SUBSTRING
SUBTRACTIO

RANGE 2-6
3-5

FUNCTION 3-5

N 3-1

I-11

INDEX

SYNTAX ERROR 1-12

SYSTEM COMMAND 1-2

SYSTEM EDITOR 1-3,3-1,4-1
SYSTEM FUNCTION 3-1,3-4 - 3-7

TAB REQUEST 5-41

TAN(X) 3-5

TANGENTY FUNCTICN 3-5
TARGET ARRAY 6-1

TELETYPE 5-6A

TERMINAL 1-5,5-6A

TO 5-10

TRACE 5-39

TRACE OFF S5-39

TRACE ON 5-39

TRAILING COMMA 5-4
TRANSFER INTO A COMPLETED LOOP 5-10
TRANSPOSE OPERATIONS 6-8
TRUE 3-3,5-15
TWO-DIMENSION 2-3
TWO-DIMENSIONAL 6-2,6-7
TYPE: SCALAR VARIABLESZ2-2
TYPES OF DATA 2-1 - 2-6

UF 5-35

UFD 1-5

UNARY MINUS 3-1

UNARY OPERATOR 3-1

UNARY PLUS 3-1

UNASSIGNED SCALAR STRING VARIABLES 5-19
UNDECLARED ARRAY 2-5

UNIT SPECIFlER 5-6

USER DEFINED FUNCTION NAME 3-7
USER DEFINED FUNCTION 3-1,3-7
USER DEFINED NUMERIC FUNCTION 3-7
USER FILE DIRECTORY 1-5

VARIABLE 1-1 1-7,2-1,2-12,5-3,5-34
VARIABLE NAME 2-2

VARIABLES: ARRAY 2-3,2-4
VARIABLES: SCALAR 2-2,2-3
VARIABLES: SUBSCRIPTED 2-3.2-4
VECTOR 2~3.,2-5

VERSION OF BASIC 5-1

VERTICAL ARROW 5-29

WR ERROR 5-41

WRITE FILE 5-41
WRITE STATEMENT 4-2
WRITE USING 5-42

I-12

J

J

WRITING 5-6
X B-2

2 B-2

ZER 6-2

ZERO LENGTH STRING 2-3
ZERO SUBSCRIPYS 2-5
ZONES 5-25

INDEX

I-13

	Front Cover
	Copyright
	i
	Contents
	ii
	iii
	iv
	v
	vi
	Foreword
	vii
	viii
	Related Publications
	ix
	Section 1
	Structure of a BASIC Program
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-6A
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	Section 2
	Types of Data
	2-1
	2-1A
	2-2
	2-3
	2-4
	2-5
	2-6
	Section 3
	Expressions and Functions
	3-1
	3-2
	3-3
	3-4
	3-5
	3-5A
	3-6
	3-6A
	3-6B
	3-6C
	3-6D
	3-7
	Section 4
	Files
	4-1
	4-2
	4-3
	Section 5
	Statements
	5-1
	5-2
	5-3
	5-3A
	5-4
	5-5
	5-6
	5-6A
	5-7
	5-8
	59-1
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-18A
	5-19
	5-20
	5-20A
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-36A
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	Section 6
	Array Manipulations and Array Statements
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	Section 7
	Interfacing Conventions
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	Appendices
	Appendix A
	Sample Programs
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	PTU-59
	Rev. 16 Interpretive Basic
	59-1
	59-2
	59-3
	59-4
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	Appendix C
	BASIC Summary
	C-1
	C-2
	Appendix D
	'NUMBER' - Utility to Number or Re-number BASIC Programs
	D-1
	D-2
	D-3
	D-4
	Appendix E
	Memory Requirements
	E-1
	E-2
	E-3
	Index
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	I-8
	I-9
	I-10
	I-11
	I-12
	I-13

