
P r i m e . I n t e r p r e t i v e B A S I C
Programmer's Guide

IDR1813-000

First Printing April 1978

Copyright 1978 by

Prims Computer, Incorporated

145 Pennsylvania Avenue

Frairdngham, Massachusetts 01701

Ihe information in this document is subject to change without notice
and should not be construed as a craiirdtment by Prime Computer Corporation.
Prime Computer Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.

CONTENTS

Page

SECTION 1 STRUCTURE OF A BASIC PROGRAM 1-1

S T A T E M E N T S 1 - 1

S T A T E M E N T F O R M A T 1 - 1
S T A T E M E N T E X E C U T I O N 1 - 1

E N T E R I N G B A S I C 1 - 1
M O D E S O F O P E R A T I O N 1 - 1
C O N V E R S A T I O N A L M O D E 1 - 2

E N T E R I N G P R O G R A M S T A T E M E N T S 1 - 2
S T O R A G E O F S T A T E M E N T S 1 - 3
R E P L A C I N G A S T A T E M E N T 1 - 4
D E L E T I N G A S T A T E M E N T 1 - 4
SUMMARY OF BASIC PROGRAM EDITING PROCEDURES 1-4

E X E C U T I N G A P R O G R A M 1 - 5
B A T C H M 3 D E 1 - 5

E X A M P L E S O F F I L E C O M v l A N D 1 - 5
L O A D I N G A N D R U N N I N G P R O G R A M S 1 - 6
E X A M P L E S O F L O A D C O M M A N D 1 - 6

I M M E D I A T E M O D E 1 - 7
C O M M A N D S 1 - 8
L O A D C O M M A N D 1 - 8
F I L E C O M M A N D 1 - 8
L I S T C O W A N D 1 - 9
R U N C O M M A N D 1 - 9
N E W C O M M A N D 1 - 1 0
C L E A R C O M M A N D 1 - 1 0
C O N T I N U E C 0 1 W A N D 1 - 1 0
C H A I N C O M M A N D 1 - 1 0
R E S T A R T I N G B A S I C 1 - 1 1

R E S TA RT I N G F R O M P R I M D S I I I , I Y, V 1 - 11
R E S T A R T I N G F R O M P R I M O S I I 1 - 1 1

E R R O R M E S S A G E S 1 - 1 2

i i

CONTENTS

Page

S E C T I O N 2 T Y P E S O F D A T A 2 - 1

N U M E R I C V A L U E S 2 - 1

R A N G E O F N U M E R I C V A L U E S 2 - 1 A

S T R I N G V A L U E S 2 - 2
S C A L A R V A R I A B L E S 2 - 2

N U M E R I C S C A L A R V A R I A B L E S 2 - 2
S T R I N G S C A L A R V A R I A B L E S 2 - 3

A R R A Y V A R I A B L E S 2 - 3

A R R A Y D E C L A R A T I O N 2 - 4
ARRAY BOUNDS, DEFAULT BOUNDS, AND STORAGE ALLOCATION 2-5
A R R A Y E L E M E N T R E F E R E N C E S 2 - 5
R E L A T I O N S H I P O F N A M E S 2 - 6

S E C T I O N 3 E X P R E S S I O N S A N D F U N C T I O N S 3 - 1

E X P R E S S I O N S 3 - 1

N U M E R I C E X P R E S S I O N S 3 - 1
O R D E R O F E X P R E S S I O N E V A L U A T I O N 3 - 2
U S E O F P A R E N T H E S E S 3 - 2
S T R I N G E X P R E S S I O N S 3 - 2
R E L A T I O N A L E X P R E S S I O N S 3 - 3
EXAMPLES OF RELATIONAL EXPRESSION USE 3-3
E VA L U AT I O N O F R E L AT I O N A L E X P R E S S I O N S 3 - 4
STRING VALUES IN RELATIONAL EXPRESSIONS 3-4

F U N C T I O N S 3 - 4

S Y S T E M F U N C T I O N S 3 - 4
EXAMPLES OF USE OF SYSTEM FUNCTIONS 3-6
U S E R F U N C T I O N S 3 - 7

S E C T I O N 4 F I L E S 4 - 1

D E F I N I T I O N 4 - 1
P R O G R A M F I L E S 4 - 1
D A T A F I L E S 4 - 1

i n

CONTENTS

SECTION 4 (Cont)

DIM

FOR

GOTO
IF
INPUT

LET
MARGIN
NEXT
ON
ON END
ON ERROR
POSITION
PRINT

COMMA SEPARATOR
COLON SEPARATOR

Page

F I L E N A M E S 4 - 2
F I L E N U M B E R S 4 - 2
F I L E E X P R E S S I O N S 4 - 3

S E C T I O N 5 S T A T E M E N T S 5 - 1

B R E A K 5 - 2
C A L L 5 - 3
C H A I N 5 - 3 a
C L O S E 5 - 3 a
D A T A 5 - 4
D E F 5 - 5
D E F I N E F I L E / D E F I N E R E A D F I L E 5 - 6

F I L E M O D E S 5 - 6 a
R E C O R D S I Z E 5 - 7

5-8
E N D 5 - 9
E N T E R 5 - 9 a5-10
G O S U B 5 - 1 35-14

5-15
5-17

I N P U T L I N E 5 - 1 8 a5-19
5-20a
5-20
5-21
5-21
5-22
5-22

5-23PRINTING NUMERIC EXPRESSIONS
P R I N T I N G S T R I N G E X P R E S S I O N S 5 - 2 45-25

5-25
T A B R E Q U E S T S ~ 2 6
P R I N T L I S T I N F O R M A T I O N 5 - 2 6

I V

CONTENTS

SECTION 5 (Cont)

r
r

Page

P R I N T U S I N G 5 - 2 7

F O R M A T F I E L D S 5 - 2 7
N U M E R I C F I E L D S 5 - 2 7
S T R I N G F I E L D S 5 - 3 1
P R I N T I N G S P E C I A L C H A R A C T E R S 5 - 3 3

R E A D 5 - 3 4
R E A D F I L E 5 - 3 5
R E A D * F I L E 5 - 3 6
R E A D L I N E 5 - 3 6
R E M 5 - 3 6
R E S T O R E 5 - 3 6
R E T U R N 5 - 3 7
R E W I N D 5 - 3 8
S T O P 5 - 3 9
T R A C E 5 - 3 9
W R I T E F I L E 5 - 4 1

R E A D A F T E R W R I T E C H E C K 5 - 4 1

W R I T E U S I N G 5 - 4 2

SECTION 6 ARRAY MANIPULATIONS AND ARRAY STATEMENTS 6-1

A R R A Y ' R E D I M E N S I O N I N G 6 - 1
I N I T I A L I Z A T I O N S T A T E M E N T S 6 - 2
A R R AY I N I T I A L I Z AT I O N W I T H R E D I M E N S I O N I N G 6 - 3
A R R A Y A S S I G N M E N T 6 - 5
A R R A Y A D D I T I O N 6 - 5
A R R A Y S U B T R A C T I O N 6 - 6
A R R A Y M U L T I P L I C A T I O N 6 - 6
S C A L A R M U L T I P L I C A T I O N 6 - 6
P R O D U C T S O F A R R A Y 6 - 7
T R A N S P O S E O P E R A T I O N S 6 - 8
M A T R I X I N V E R S I O N 6 - 8
D E T E R M I N A N T S 6 - 8
M A T R E A D 6 - 8
M A T R E A D F I L E 6 - 9
M A T R E A D * F I L E 6 - 1 0
M A T W R I T E F I L E 6 - 1 0
M A T I N P U T 6 - 1 1
M A T P R I N T S T A T E M E N T 6 - 1 2

v

" >

" >
CONTENTS

Page

S E C T I O N 7 I N T E R F A C E C O N V E N T I O N S 7 - 1

R E L A T I N G C A L L T O S U B R O U T I N E 7 - 1
M O D I F Y I N G C O M M A N D F I L E 7 - 6
RUNNING PROGRAM WITH CALL STATEMENTS 7-7

APPENDICIES

v i

FOREWORD

BASIC is easy to learn and easy to use. The rules of form and usage
are simple. This manual describes the Prime BASIC language processor
and demonstrates how it is used to solve problems and cope with features
common to computers. It is suitable for (1) people who know BASIC and
want to know what Prime's BASIC is like and (2) experienced programmers.
The tyro is advised to supplement this book with a primer on BASIC.

Prime BASIC is an extended subset resembling the BASIC developed at
Dartmouth College. It provides users with the ability to write programs
and get meaningful results from the computer in a relatively short
time. With a few hours of instruction and/or practice, most people
can produce worthwhile BASIC programs and obtain useful data from
them.

r

Section 1 describes the structure of a BASIC Program, gives
a few general rules about writing BASIC program
statements, and tells how to enter BASIC and how
to input, edit, and RUN programs.

Section 2 describes in detail how numeric and string data are
represented in BASIC, and gives limits of numeric and
string data values.

Section 3 describes both numeric and string expressions,
expression operators, and expression evaluation.

Section 4 describes the organization, and the input and output
of program and data files.

Section 5 describes the statements available in the BASIC
language. The function and syntax of each statement
is described and examples of each statement are
given along with the description.

Section 6 describes the statements available to manipulate
matrices and vectors.

Section 7 describes how to interface called FORTRAN or PMA
language programs.

Appendix A gives some sample programs using the BASIC language.

Appendix B lists the error messages returned by the BASIC
language processor and the definitions of those
error messages.

v i i

Appendix C is a quick summary of all the features of BASIC.

Appendix D describes a utility program to renumber BASIC programs.

Appendix E describes the memory requirements for various versions
of Prime BASIC.

VERSIONS OF BASIC

On the master disk (i.e. , that disk supplied to the Prime customer with
all the current software), there are two versions of the BASIC
language interpreter: BASIC and DBASIC.

BASIC is a full version of the BASIC interpreter that includes MAT
functions and PRINT USING functions. DBASIC is a full version of BASIC
that takes advantage of Prime's'' double-precis ion floating point
ari thmetic capabil i t ies.

Both versions of BASIC are in the users command directory (CMDNCO).

DOUBLE PRECISION BASIC

Prime BASIC includes double precision floating point representation.
BASIC with double precision floating point is implemented using
floating point hardware; thus, coding that references floating point
operations is both in line and efficient.
All constants, variables, and array elements are represented in floating
point format with a 48-bit mantissa and a 16-bit exponent. This
representation allows numbers to have an accuracy up to 14.2 decimal
places. With double precision floating point, it is possible to repre
sent a number up to:

9,999,999,999,999

or a dollar sum up to:

$99,999,999,999.99

without resorting to the use of scientific format.

To use the double precision version of BASIC, type the command:

DBASIC

v i n

Use of this version of BASIC, other than for the extensions
outlined, is identical to the use of BASIC described in this manual

RELATED PUBLICATIONS

The following Prime documents should be available for reference:

REFERENCE GUIDE, PRIMDS COMMANDS, PDR3109

NEW USER'S GUIDE TO EDITOR AND RUNOFF, PDR3104

REFERENCE GUIDE, FILE MANAGEMENT SYSTEM,PDR3110

I X

SECTION 1

STRUCTURE OF A BASIC PROGRAM

STATEMENTS

A BASIC program consists of a series of sequentially ordered
statements.

Statement Format

Each statement is preceded by an integer called the statement
number. This number serves as both a statement sequence number as
well as a line identifier. An example of a BASIC statement is:

100 PRINT 'AARDVARK'

Each statement must be contained on one line. The length of a line
is dependent on the number of characters that can be typed before a
carriage return is needed to prevent the line from overflowing.
BASIC will accept lines up to 120 characters in length.

Statement Execution

When a program written in the BASIC language is run, the statements
are executed in order of statement number (unless a statement such as
GOTO affects the normal order).

ENTERING BASIC

To enter BASIC from operating system command level, type:

BASIC

The system then replies:

GO
>

The character '>' indicates that the BASIC processor is awaiting a
command, and is printed as a prompt.

Entering BASIC treename causes an automatic CHAIN treename
command.

MODES OF OPERATION

rThe Prime BASIC language processor consists of a command processora statement editor and a BASIC language interpreter.

r
1-1

After entering BASIC from operating system command level, GO is
typed. The user may:

1. Input, edit, and RUN programs written in the BASIC
language (conversational mode);

2. Execute existing programs written in BASIC language and
stored on disk or paper tape (batch mode);

3. Execute BASIC statements as they are typed at the terminal
(immediate mode).

CONVERSATIONAL MODE

Entering Program Statements

To enter a statement, type the statement number followed by the body
of the statement. All statements must be terminated by a carriage
return.

Statement Numbers: Statement numbers are integers that range from
1 to 9999. They do not have to be in cardinal sequence (i.e.,
1, 2, 3...n-l,n), but they must be in an ordered sequence (e.g., 10,
12, 15, 20...n). It is recommended that statements be numbered by
increments of 10 (100, 110, 120, 130...). Then, if a statement must
be inserted between 10 and 20, for example; it can be numbered 15,
and it is inserted between 10 and 20.

For example:

110 PRINT 'NAME', N$
120 PRINT 'ADDRESS' A$
130 PRINT 'CITY', C$

To insert lines between 110 and 120, and 120 and 130, in order to
make the output more readable, the user need only type:

115 PRINT
125 PRIM1

at his terminal. The resulting program sequence is as follows:

110 PRINT 'NAME', N$
115 PRINT
120 PRINT 'ADDRESS', A$
125 PRINT
130 PRINT 'CITY', C$

1-2

Body of Statement: In the conversational mode, each statement starts
after its statement number with a full or partial English word. This
word denotes the type of the statement.

Examples of BASIC statements are:

100 REM THIS IS A REMARK
110 LET X = 2
120 PRINT X

Blanks: Blanks (spaces) have no significance except in string constants
Generally, spaces are used to make the program more readable. For
example:

110 LET X = 3.14
110 LET X = 3.14
110 LETX=3.14

are equivalent. Thus, BASIC statements are free-formatted and the
user may employ spaces at will to format BASIC program text.

Special Characters: The following characters have special meaning
" r e m o v e s t h e c h a r a c t e r p r e v i o u s l y t y p e d .

? removes a l l p rev ious characters on a l ine.

CARRIAGE RETURN Terminates a source statement.

This convention is consistent with the operating system and the
system Editor.

Storage of Statements

When the CARRIAGE RETURN is received by the BASIC language
processor, the statement is stored into the program storage area.
Statements may be entered in any order, but their execution occurs
in the order of their statement number.

1-3

Replacing a Statement

If a statement is entered with the same number as a statement
already in the program storage area; the previous statement is
removed, and the new statement is placed in the storage area
instead.

Example:

Existing statement is:

110 LET XI = Y**2

Assume a new statement is typed as follows:

110 LET XI = Y t 2

The second statement numbered 110 replaces the first statement.

Deleting a Statement

To remove an existing statement without replacing it, type the
statement number followed by a CARRIAGE RETURN. Example:

110

deletes statement numbered 110.

Summary of BASIC Program Editing Procedures

To input a statement, type:

unused statement number, followed by statement, followed by
CARRIAGE RETURN.

To insert a statement, type:

a statement using a statement number between the two
statements surrounding the insertion.

To replace a statement, type:

a new statement with a statement number that is identical
with the number of the statement to be replaced.

To delete a statement, type:

the statement number, followed by a CARRIAGE RETURN.

1-4

EXECUTING A PROGRAM

To run all BASIC statements in the program storage area, the user
types:

RUN

This causes the BASIC language processor to interpret and execute
the program comprised of the statements in the program storage area.

BATCH MODE

In addition to input from a terminal, statements may be input to the
BASIC processor from source files on disk, or from off-line storage
devices such as paper tape, magnetic tape, or cards.

Data to be processed during RUN time may come either from the program
itself (DATA statements), from the terminal (via use of INPUT
statements), or from files on disk. Output data from a program
written in BASIC may either be printed at the terminal or placed in
a file on the disk.

Batch mode requires the reading and writing of files via the use of
the LOAD and FILE commands.

After a BASIC program is written, it may be saved in the User File
Directory (UFD) via a FILE command. (For information on the UFD,
see New User's Guide to EDITOR and RUNOFF, PDR3104. The syntax of
the FILE command internal to BASIC is:

FILE 'TREENAME'

o r

FILE 'TREENAME', Sl, S2

where TREENAME is the symbolic name of the file to be created or updated
enclosed in single quotes. The single quotes are delimiters necessary
to BASIC and are not part of the file name. The file TREENAME is
updated; however, the contents of the BASIC program storage area remain
unchanged. TREENAME may also be a parenthesized device name (see the
DEFINE FILE statement discussion in Section 5). The optional argument
Sl specifies the first statement number of the BASIC program to be
filed. If Sl is omitted, its default value is 1. The optional argu
ment S2 is the last line to be filed. If S2 is omitted, its default
value is 9999. All statements having statement numbers in the inclu
sive range Sl through S2 are output to the specified file or device.

Examples of FILE Command

FILE 'RANDXX'

creates a file named RANDXX in the current UFD.

1-5

FILE *(PTP)', 100, 200

creates a file for output to the paper tape punch consisting of all
the statements in the program storage area with statement numbers
between 100 and 200 inclusive. The contents of the program storage
area remain unchanged.

Loading and Running Programs

To load and run a BASIC program that has been previously edited and
saved in a file, the user loads the program by using the LOAD
command, and executes the program by issuing a RUN command immediately
after issuing the LOAD command.

The syntax of the LOAD command is:

LOAD 'TREENAME'

o r

LOAD 'TREENAME' , Sl

where TREENAME is the name of a file in the UFD or a symbolic device
specification and the single quotes are delimiters required by BASIC.
The optional argument Sl is a statement number specifying that all
statements in the loaded source files are to be biased by the specified
statement number value, in order to avoid conflict with any program
already loaded. If Sl is omitted,statements in the program storage
area are numbered the same as the corresponding statements in the file.

The RUN command may have been written as the last line of the source
file by use of the system editor. In this case, the initial LOAD
command causes the program to be both loaded and run.

Examples of LOAD Command

The command line:

LOAD 'RANDXX'

loads the previously saved file RANDXX into the program storage area.

LOAD '(PTR)', 1000

loads a file from the paper tape reader, and starts numbering the
stored statements at statement number 1000.

After the program, or programs are stored using the LOAD command,
the user executes all statements stored by typing:

RUN

1-6

The following is an annotated example of some trivial programs
written in BASIC, it shows simple editing of a series of program
statements in conversational mode and the loading and running of
programs using BATCH mode concepts. The use of the BASIC FILE,
NEW, LIST and LOAD commands is also illustrated. User input is
underlined.

r
OK# BASIC
GO
>10 REM START
>20 PRINT 'AARDVAARK*
>30 END
>FILE 'AARD* -<
> N E W ^
>30 PRINT 'SYZYGY*
>40 END -< Typing a new program

BASIC is invoked and a simple
/program is typed in by the user

-To save this program as a file
•To clear program storage area

>FILE "SVfcYGY*
>QUIT ^ To exit from BASIC

OK j

r

OK, BASIC
GO
>LOAD #AARD*
>LOAD 'SYZYGY*
> L I S T ^

10
20
30
40

>RUN

REM START
PRINT 'AARDVAARK'
PRINT 'SYZYGY'
END
-^ To execute program

At a later time BASIC is entered and
the filed programs are loaded
To list the contents of the program

storage area.

AARDVAARK
SYZYGY Output from user program

END AT LINE 40
>

r
r

1-6A

IMMEDIATE MODE

Immediate mode allows a user to type BASIC statements with no state
ment number and thereby obtain immediate results. Such statements
are not stored in the program storage area. For example:

PRINT 'XYZ'

causes the string XYZ to be printed at the terminal.

The immediate mode capability gives the user a super-calculator
with a rich choice of functions, automatic decimal point handling,
and up to 286 variables, as well as arrays available for partial
answer storage.

One use of immediate mode is to use the BASIC subsystem as a desk
calculator. For example:

X = 256*12

PRINT X

returns the product of 256 and 12.

The PRINT statement is a particularly useful immediate mode command.
For example:

LET XI = 1.05

PRINT SIN (XI* 3.14959/180)

causes the appropriate value of the SIN function to be issued.

The immediate mode is useful at times for debugging programs written
in.BASIC. For example, if the user has made use of the BREAK statement
(Section 5) to halt a program at some point, typing:

PRINT J2

prints the value of the variable J2 at the point that the execution
of the program was interrupted.

Similarly, it is possible to use the PRINT statement to print the
value of any and all variables at a point of interruption.

1-7

COMMANDS

The BASIC language processor provides a number of commands to be used
with the operating system and to initialize storage areas. Of these,
use of RUN, FILE and LOAD have been previously discussed.

These commands are usually executed in immediate mode, but they may be
part of a program statement.

The syntax and function of system commands are described in the follow
ing paragraphs:

LOAD COMMAND

Syntax

LOAD 'TREENAME'

o r

LOAD 'TREENAME', Sl

'TREENAME' - is a string constant that specifies
the file to be created (or parenthe
sized device specified). The single
quotes are delimiters required by BASIC.

Sl - is a relocation constant that is added to
every statement number in the program,
written in BASIC, to be loaded.

Function

The specified file (of BASIC Source Statements) is loaded into the
BASIC program storage area.

The loaded program is merged with any program already loaded. For
examples, see the previous section entitled "Examples of Load Command".

FILE COMMAND

Syntax

FILE "TREENAME'

or

FILE 'TREENAME' , Sl

or

FILE 'TREENAME, Sl, S2

'TREENAME'' - (is the same as described for
LOAD, above.)

51 (optional) = first line to be filed (default = 1).
52 (optional) = last line to be filed (default = 9999)

1-8

" >

" >

Function

All statements whose statement numbers are in the inclusive range
Sl through S2 are output to the specified disk file or output
device. Output is in the order of their statement numbers.
Example:

FILE 'NEWPRO'

LIST COMMAND

Syntax

LIST

o r

LIST Sl

o r

LIST Sl, S2

51 = first line to be listed (default = 1).

52 = last line to be listed (default = 9999).

Function

The LIST command prints output at the terminal. The LIST command
provides a means to print all or part of the previously edited state
ments for the user's inspection.

Examples:

LIST

LIST 100, 250

RUN CQNMAND

Syntax

RUN

o r

RUN Sl

1 ^ S l = s t a t e m e n t n u m b e r s p e c i f y i n g t h e fi r s t s t a t e m e n t
to be executed (default is the first statement
in the program).

1-9

Function

RUN clears all variables, allocates arrays from DATA statements,
and starts program execution.

NEW COMMAND

Syntax

NEW

Function

The NEW command deletes all existing program statements and de
allocates all arrays and variables.

CLEAR COMMAND

Syntax

CLEAR

Function

The CLEAR command de-allocates all arrays and variables. Any
existing statements are not deleted.

CONTINUE COMMAND

Syntax

CONTINUE

Function

The CONTINUE command restarts program execution at the point that it
was last interrupted by a BREAK, STOP or END statement.

CHAIN COMMAND

Syntax

CHAIN treename

Function

The CHAIN command is equivalent to NEW, LOAD treename, RUN. If errors
are detected in the program, RUN is suppressed and an error message is
pr in ted .

1-10

RESTARTING BASIC

Restarting from PRIMOS III, IV or V

The user may desire to QUIT from running a BASIC program (e.g., to avoid
printing unwanted output), and then returning to running under control
of BASIC. Naturally, it is desirable not to lose any information in
the program storage area or cause any unspecified operations. For PRIMOS
III, IV or V, the correct manner to achieve this result is to type the
following sequence of system command lines:

CONTROL-P (Quit by pressing terminal CTL
and P Keys simultaneously).

START 1002

Restarting from PRIMOS II

Under PRIMOS II, to QUIT from running a BASIC program, momentarily set
Sense Switch 1. The running program is interrupted and control returns
to BASIC command mode.

Return from INPUT

The user may type the sequence:

CONTROL-C To return from BASIC INPUT statement
execution to conversational mode
(Refer to Section 5).

r

r
r

l - n

ERROR MESSAGES

Statements are syntactically checked as they are entered. Errors that
can only be detected within the context of the entire program are
detected at run time. An example of a syntax error is:

100 PRINT 'SUM OF A § B IS: X

The closing ' mark is missing and this would be detected immediately
upon entry. An example of a context error is an undefined statement
number in a GOTO statement.

If an error is detected during statement input, a two-line error is
printed at the terminal. The first line is the source statement in
error. The second line consists of first, a vertical arrow positioned
under the last character that BASIC examined before detecting the
error, and then a two-character error code. These codes are listed as
source (S) errors in the table in Appendix B.

Errors detected during program input cause the line in error to be
removed from the program.

During program exectuion (RUN time), detected errors cause a one-line
message to be printed as follows:

ERROR XX LINE 385

where XX is the error code. These codes are listed as execution (E)
errors in the table in Appendix B.

Errors detected during program execution also cause a pause to
occur. Typing:

CONTINUE

causes processing to continue with the next statement.

1-12

SECTION 2

TYPES OF DATA

Two types of data are supported by Prime BASIC: numeric and string.
BASIC allows constants and variables of both types.

NUMERIC VALUES

A numeric value is a floating point number. Depending on the version
of BASIC being used, it may be single or double precision.

A numeric constant is written as a signed decimal number. It may
contain a decimal point, and it may be followed by an exponent.

The exponent field is optional and is written as the letter E
followed by an optionally signed decimal integer.

If the decimal point is omitted, it is assumed to be- located immedi
ately to the right of the last significant digit (right-most digit).

If the sign of either the numeric constant or the decimal integer
exponent is omitted, it is assumed to be positive.

Examples:

12

1.2

-6.666

-7

2.5E-2 (.025)

2.5E+12 (2.5 * (10)12)

-7.3E-2 (-.073)

5E5 (500000)

2-1

Range of Numeric Values

For single-precision values; all constants, variables and array
elements are represented in floating point format with a 24-bit
mantissa and an 8-bit exponent. This representation allows numbers
to have accuracy up to 6.2 decimal digits, and the exponent of a
single-precision numeric value may range between -38 and +38. (10 to
the -38 power, or 10 to the +38 power).

With single-precision format, it is possible to represent a number up
to: 999,999 or a dollar sum up to: $9,999.99 without resorting to
scient ific format.

For double-precision values; all constants, variables, and array
elements are represented in floating point format with a 48-bit
mantissa and a 16-bit exponent. This representation allows a number
to have an accuracy up to 14.2 decimal places.

With double-precision floating point, it is possible to represent a
number up to: 9,999,999,999,999 or a dollar sum up to: $99,999,999,999.99

2-1A

STRING VALUES

A string value is a string of ASCII characters.

A string constant is written as a set of 0 or more contiguous ASCII
characters enclosed in delimiting single quotation marks
(or apostrophes). A string constant can contain any ASCII character
except: CARRIAGE RETURN, ?, or ". The maximum length
(number of characters) of a string value is a function of the line
size of the terminal or upon the available memory. Generally, this
is large enough to be of no problem to the user. It is suggested
that for convenience no string be greater than 80 characters.

" >

Examples:

'THIS IS A CHARACTER STRING CONSTANT'

'DATE/TIME/YEAR'
' ' (n u l l s t r i n g) _

'12345'

SCALAR VARIABLES

A scalar variable is implicitly defined when it is used in a
BASIC program. The type of scalar variable (i.e., numeric or
s t r i n g) i s d e t e r m i n e d b y t h e f o r m o f t h e v a r i a b l e n a m e . ^ ^ ^

Numeric Scalar Variables

The name of a numeric scalar variable is a single letter (A-Z), or it
is a single letter (A-Z) followed by a single digit (0-9). Each
variable represents a single numeric value; there are 286 possible
numeric scalar variables. A numeric scalar variable is initialized
automatically to 0 at the start of the BASIC program that defines
i t .

Examples of Numeric Scalars:

X

Al

G 3 ^

2-2

Example of Use of Numeric Scalars:

20 LET Cl = 3.14157

22 LET X = Cl*2

String Scalar Variables

The name of a string scalar variable consists of a single letter
followed by a dollar sign. A string scalar variable represents a
character string of variable length. String variables are initial
ized to a null (zero length) string at the start of the BASIC
program that defines it. The length of a string variable is auto
matically set to the length of the string that is assigned to it.

Example of String Scalar Variable:

B$

Example of Use:

100 LET B$ = 'BALANCE IS:'

ARRAY VARIABLES

An array is an ordered set of values. All elements of an array
(array variables) have the same data type (i.e., either numeric or
string). The elements of an array are stored in contiguous
locations in storage and are referenced by an array subscript.
Arrays are stored in column major order.

An array name is represented by a single letter followed by the
parenthesized list of one or two bounds.

An array element is designated by an array subscript that is either
one number (bound) in parentheses (one-dimension), or two numbers
(bounds) m parentheses and separated by commas (two-dimensions).
An array with one-dimension may be operated on as a vector; with two
dimensions, it may also be operated on as a matrix (See Section 6^.

Examples:

A (6)

A (2, 3)

2-3

Conceptually, the array A (2,3) is:

A (0 ,0) A (1 ,0) A (2 ,0)

A (0,1) A (1,01) A (2,1)

A (0 , 2) A (1 , 2) A (2 , 2)

A (0 , 3) A (1 , 3) A (2 , 3)

Table 2-1. Example Array A (2,3)

Logically, the array A (2,3) maps into storage as shown in the
following table:

Relat ive
Location

0001
0002
0003
0004
0005
0006
0007
0008
0009
00010
00011
00012

Element

A ('0,0)
A ('1,0)
A ('2,0)
A ('3,0)
A ('0,1)
A (1,1)
A ('2,1)
A ('3,1)
A ('0,2)
A ('1,2)
A ('2,2)
A ('3,2)

Table 2-2. Array Mapped into Memory

Array Declaration

An array can be explicitly defined in a DIM statement, or implicitly
defined by its use in the program.

DIM statements, if used, may appear anywhere in the program,
since BASIC locates and interprets all DIM statements before
execution starts.

Examples:

DIM A (5)

defines a one-dimensional array of 6 locations A, A (0) through
A (5).

2-4

DIM A (2, 3)

defines a two-dimensional array of 3 columns and 2 rows, A (0,0
through A (2,3).

NOTE: The entire chart shown in Table 2-1 is the array
specified by the DIM statement, DIM A (2,3). Those
elements of the array that do not have zero subscripts
(e.g., A (1,2); A (1,3); A (2,1); A (2,2); A (2,3) define
the matrix A. This matrix may be manipulated via the MAT
statements described in Section 6.

If the DIM statement is omitted (i.e., an array is undeclared), the
array dimensions are established in any MAT statement encountered;
otherwise the array is either a one-dimensional array of no more than
10 elements (e.g., A(10)), or a two-dimensional array of bounds 10 by
10 (e.g., A(10,10)), depending on how the array is referenced.

Use of an array in a MAT statement can cause the array to be defined
either as a vector or matrix depending on the other arrays used in
the statement (refer to Section 6).

Array Bounds, Default Bounds, and Storage Allocation

The original bounds of an array are established by the DIM statement that
defines the array, by the first MAT statement that references the array,
or the implicit value ((10) or (10,10)). The original bounds of an
array specify the total amount of storage allocated for the array. The
MAT statement can reduce the size of an array, but the MAT statement
cannot increase the size of the array beyond that of the original
definition. Although the dimensions of an array may be changed, the
storage allocation for the array does not change during execution of
the BASIC program.

Array Element References

Numeric Arrays: The name of a numeric array is a single letter
(A-Z). When a single element of an array is initialized to any
value, the remaining elements of numeric arrays are initialized to 0.

String Arrays: The name of a string array is a single letter followed
by a dollar sign, $. The elements of a string array are variable-
length character strings. These character strings may all be of
different lengths. Elements of a string array are initialized to a
null value when the array is established.

A reference to an array element consists of the array name followed
by a parenthesized list of one or two subscripts; i.e., A (Sl) or
A (Sl, S2), where A is the array and Sl and S2 are positive numeric
expressions (see Section 3 for a discussion of expressions).

2-5

Examples of Numeric Arrays:

A(5)

A(2,4)

A(K, J) where K and J are numeric scalar
var iables

A(I+1, J/2)

A(I+J, 3*K-2)

If the value of a subscript expression is fractional, the value of
the subscript is truncated to an integer before it is used to locate
the specified array element.

The value of any array subscript expression must be within the range
of the corresponding array dimension.

Examples of String Arrays

A$(5)

A$(I+1, 3*K-2/J)

A$(A (I) /4)

Relationship of Names

A string variable and a string array may have the same name in a
program. Likewise, a numeric variable and a numeric array may have the
same name. However, these names all refer to entirely different
entities. The context in which the name is used is the determining
factor. For example:

10 B$ = 'BBBBB'

20 DIM B$ (7)

25 B = 2

30 DIM B (7)

are different variables even though the names are apparently the
same. B$ references a string scalar variable; B$ (7) references
a string array of 8 elements (0-7); B references a numeric scalar
variable and B (7) references a numeric array.

2-6

SECTION 3

EXPRESSIONS AND FUNCTIONS

The first part of this section describes the arithmetic and string
expressions that may be constructed in the Prime BASIC language.
The second part describes functions, both user defined functions,
and system functions provided by BASIC, such as SIN, LOG, etc.

EXPRESSIONS

BASIC expressions are constructed from operators and operands. An
operand may be a constant, a scalar variable, subscripted array
element, or a function reference.
Operators that require two operands are called binary operators.
Operators that require one operand are called unary operators.
BASIC defines two types of expressions: numeric and string.
Numeric operands must not be used with string operators and string
operands must not be used with numeric operators. There is no
conversion between numeric and string values. The user must define
explicit conversion functions to convert from one data type toanother.
Numeric Expressions

BASIC defines two unary operators and five binary operators that
operate on numeric operands to produce a numeric value.

Operator Meaning Example

unary plus + 1

unary minus -I

addition I + J

subtraction I - J

multiplication I * J

division I / J

exponentiation I t 2

Table 3-1. Numeric Operators

—^ The operators listed in Table 3-1 have their normal arithmetic
f^ meaning. The operations are performed in floating-point arithmetic

3-1

The user is cautioned that if he uses the system editor to create
a BASIC source program, then escape conventions must be observed
to produce some of the symbols desired. For example, using the
system editor, the exponentiation operator (*) must be escaped by
typing a double vertical arrow (tt).

Order of Expression Evaluation

A numeric expression is evaluated in the order of operator priority.
This is determined by rules of precedence in the BASIC langauge
processor. These rules of precedence are:

P r e c e d e n c e O p e r a t o r

3

2 u n a r y (+ , -) , * , /

1 b i n a r y (+ , -)

Operators with higher precedence are evaluated before operators with
lower precedence.

Operators with equal precedence are evaluated from left to right.

Example:

A+B-C*D* E » F t G

is interpreted as:

(A + B) - C(C * D) * (Et (FIG))

Use of Parentheses

Parentheses can be used to control the order of expression evaluation
The operation inside of the parentheses is evaluated first.

Example:

(A + B) / 2

The addition, A + B, is performed, then the division by 2 is
performed, even though / has higher precedence than binary + •

String Expressions

String expressions in BASIC are constructed using the concatenation
operator (+). This operator combines two string values to produce

3-2

* >

" >

a string having a value of the characters of the first string
immediately followed by the characters in the second string.

Examples:

A$ + B$

'HELLO' + U$ + 'WELCOME TO PRIMOS'

'ABC' + B$

X $ (1-1) + 'Ql' + S$

Relational Expressions

BASIC defines six relational operators that may be used in either
numeric or string expressions, as long as data types are not mixed.
The relational operators are shown in the following table:

Operator Meaning Examples

< less than X<Y X$ <Y$

> greater than X1>Y1 A$ >B$

= equal I = Jl C$ = D$

< s less than or equal J2 <= J3 A$ <= B$ + C$
= < less than or equal J2 =< J3 A$ =< Y$
> = greater than or equal Z >= 10 A$ >= C$

= > greater than or equal 10 => Ql C$ => B$

<> not equal D <> 1 A$ <> "

> < not equal Al >< A2 + A3 A$ >< B$

Table 3-2. Relational Operators

Examples of Relational Expression Use

20 IF SIN (ABS (K - 3.14) - 1) = (1+1) - 1 THEN 200

30 IF S$ <> 'T' THEN 450

3-3

Evaluation of Relational Expressions

The relational expressions are true if the expressions satisfy
the given expression. Examples:

120 IF X =< Y THEN 900

150 IF B$ = 'END' THEN 9999

160 IF B$ >A$ THFN 120

String Values in Relational Expressions

When string values are compared in relational expressions, character by
character is determined by ASCII code. If the strings being compared
are of different lengths, the shorter of the two strings is extended
by adding spaces to the right until the strings are of the same
length; then, the strings are compared. Use of string values in
relational expressions are given in statements 150 and 160 in the
previous set of examples.

FUNCTIONS

BASIC provides system functions and allows the user to provide
user-defined functions. A function reference consists of a function
name (such as TAN) followed by a parenthesized argument list containing
one or more arguments. Function arguments are evaluated before the
function is evaluated.

Arguments used in a function reference must match the number and
data type of arguments expected by the function.

Function references are evaluated at the point that their value
is required. They do not affect the order of operator evaluation.

System Functions

The following list gives the numeric and string functions provided
by the BASIC language processor. In all of the descriptions listed,
X represents any numeric expression, I and J represent any integers,
and A$ represents any string expression.

3-4

SIN(X

ASN(X

COS(X

ACS(X

TAN(X

ATN(X

DEG(X

RAD(X

LOG(X

EXP(X

SQR(X

ABS(X

SGN(X

INT(X)

RND(X)

LEN(A$)

SUB(A$,I,J)
o r

SUB(A$,I)

INDEX(A$,
B$)

computes the sine of X, X expressed in radians

computes the principal arcsine of X.(-1<X<1). Value
returned is in the range -PI/2 to PI/2

computes the cosine of X, X expressed in radians

computes the principal arccosine of X.(-1<X<1). Value
returned is in the range 0 to PI.

computes the tangent of X, X expressed in radians

computes the arctangent of X, result is in radians

returns the number of degrees in X radians

returns the number of radians in X degrees

computes the natural logarithm (base e) of X

computes e raised to the X power

computes the square root of X

computes the absolute value of X

returns a value based on the sign of X as follows:

X < 0 SGN(X) = -1

X = 0 SGN(X) = 0

X < 0 SGN(X) = 1

If X =0, returns the greatest integer >= X. If X < 0,
returns the least integer >= X.

If X < 0, uses X to initialize the random number generator,
and returns X as the function value. If X > 0, uses X to
initialize the random number generator, and returns a
value in the range zero to one. If X = 0, returns a
random number in the range zero < result < 1. (Under
PRIMOS III, IV, or V it is receded whenever a RUN of
CHAIN statement is processed).

returns the length (number of characters) of the string A$.

returns a substring that is composed of characters I-J of
string A$. If J is not specified, the result is one
character substring consisting of character I of string A$.

returns the starting character position of the first
occurrence of B$ in A$. If B$ is .NULL, or does not occur
in A$, the value of function is 0.

3-5

CVr$$(A$,I) formats A$ according to the value of I

I _ F u n c t i o n

1 force parity bit on
2 discard all spaces
4 discard all .NUL., .NL., .FF., CR., and .ESC.

characters
8 discard leading spaces

16 reduce multiple spaces to one space
32 convert lower case to upper case
64 convert [to (and] to)

128 discard trailing spaces

Multiple reformatting may be obtained by adding values
together.

returns system time in hours, minutes, seconds, and
milliseconds as the string HHMMSSmmm. (Hours are given
in 24-hour time)

returns system date as month, day, and year as string
MMDDYY.

used as an item in a print list; ignored unless output
is to a terminal.

TIME$

DATE$

LIN(I)

SPA(I)

TAB(I)

STR$ (X)

VAL(A$)

VAL(A$,I)

DET (A)

>0
<0

^ Action

outputs I .CR. .LF. pairs
outputs ABS(I) .LF. S

prints spaces to the terminal; ignored unless output
is to the terminal.

_ I A c t i o n

>0 outputs I spaces
<0 no output

tabs to position I on the output device

converts a numeric argument, X, into a character string

converts a string expression to its numeric value. The CE
error is reported if the string cannot be converted

converts the string expression A$ to its numeric value. If
successful I is set to 0; if the string cannot be converted
I is set to 1 and the VAL function is set to 0.

returns the determinent of the square matrix A

3-5a

Examples of Use of System Functions

INT: One use of the INT function is to round numbers. Example:

INT (2.9 + .5) = INT (3.4) = 3

The INT function can also be used to round any specific numeric
value to any specific number of decimal places. Examples:

INT (10*X1 + .5) /IO

rounds XI to 1 decimal place.

INT (100 * XI + .5) /100

rounds XI to 2 decimal places.

RND: To produce twenty three-digit random integers, edit and run
the following BASIC program:

1J riEM PrtOGrtAM TO PrtliJT RANDOM NUMBERS OF 3-DIGITS OH LESS.
20 FQd 1=1 TO 2J
3J LET L = rtNiKJ)
35 LET Li = INT(L*UJJ>
43 PrUMT LI
5 J MSXT I
63 END

EXAMPLE OF ̂ UT̂ UT
RUtJ
211
352
3J1
716
673
176
535
5J7
353
163
373
3J9
73
266
473
61
645
906
212
699

END AT LINE 60
3-6

The following example is a program that illustrates a use of each
of the system functions previously described; it is followed by
sample output so the user can get an idea of the results from using
the system functions.

- , , { - « r ; , H V L t T O 5 : i O V U S E O F S Y S T E M F U N C T I O N S
11'.) r i-•'
1 ?;; kM'1 mL'= 1 -I _ ^- •; - y .'♦
1 j > o ' v M
1 1 4 . l l T v = . W «♦ - 3

^ ; i. r v. 1 i)r GRh^ Iv K^ I >'- JS
1 „ . = . ^ j > r >
1 ?v! • = . * '• -'^ !'
1 f t - i Y = 1 . S 7 1 V

•^ I;,;, 1;J!yTz ^m^.TS 3^4S,60,M; DEGKEFS respectively
.:1. ; • • •»-v i

.vp.v TrlG- f'tnit r . I Si C r T 0 N S CALCULATIONS
?3;« S1 = blN c, ^
?4-» 'Jr"1 = SIN (•")
,.3.. v» = si\ m
? .■) • : ; « ; - s i J < y)

,■ • / - ■ . , - s i m (n

c- c-i = c ■ -, < v)
,:-•■- c = co* co
.;,v: c ^ = c^ CO
i 1 tJ ru = C w i (Y)
^ ^ = c . = e. «v> o.)
Z -2. Ii = T '. \! < O
S A T /. ,- 1 A > (O
7 '. •. j s = T f- N (<)
< fV I i A = T '" -< CO
,(\ O -- r a . (7.)
«.f . •• 1 = r T ■: (Tl >
j - ; . . : •■ : = , . T \ (T D
<♦ ' A s ~- A T > (T O
4 1 - - — ^ M * , ? T O
4 2 . ' i • ' s = . ' t ■■ (r s)" ■ . v , t . ; - t G , . , r c . , . f l I • , ' C . O ' , ' T A ' , • , ' ^ C T A N

t.U , r • I T
L, ;; ■ < I ,\' T 1 / '•' "i / C 1 / T 1 / »* '.

f < n I T j . /S i / f t ' / l - . / A / •
^ 7 . rJ r> I P1' I -» V> / ■ J / C '> ' 1 "' < "

3-6A

480
40U
500
510
520
530
540
550
560
570
5«0
590
6 00
610
6?0
630
640
650
660
6 70
6S0
690
700
710
720
730
740
750
760
770
78u
790
800
810
fc2u
830
*4u
h 5 i)
hb{)
870
u3i)
890
900
91 J
9?0
930
940
950
960
970
9 8 0

P R I N T 6 0 , S 4 , C 4 * T 4 / A 4
PRINT 90/>S5^C5,T5,A5
REM
REM ARITHMETIC FUNCTIONS (LOG ETC)
REM
X 7 . 5 0

LOG(X)
EXP(X)
S Q R (X)
ABS(X)
I N T (X)
SGN(X)

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
REM RANDOM
REM

'NUMBER ='*X
'LOG(X)* ,1
'EXP', E
•SQUARE ROOT'^G

'ABS(X) ' , ' INT(X) ' , 'S IGN(X) '

A ^ I ^ P

NUMBER FUNCTIONS

•RANDOM NUMHER FUNCTIONS'

'RND(O) ' / 'PND(N) * , 'RND(-N)

PRINT
PRINT
PRINT
PRINT
Z 1 = R N 0 (0)
l i - RND(1)
Z3 = RNIH-1)
PRINT I \ ,17,11
P Ri N T
REM STRIWG FUNCTIONS
REM
x$ = 'EVALUATION OF STRING EXPRESSIONS
PRINT 'VALUE OF A GIVEN STRING:'
PRINT
PRINT XS
PRINT
L1 = L F N (X $)
PRINT 'LENGTH
PRINT L1
P R I n T
PRINT 'SUBSTRING
Bi = SUB (Xi/21*31)
PRINT B/r
 ̂R I N T

END

OF STRING:

POSITIONS 21-31

3-6B

Sample Output:

» L > E G R E E S S I N C O S T R N R R C T R N

1 1 . 7 4 4 9 1 E - 0 2 9 9 3 8 4 7 1 . 7 4 5 1 8 E - 0 2 1 . 7 4 5 E - 0 2

3 0 4 3 9 3 9 2 3 6 6 6 3 5 7 7 3 3 8 5 2 3 : 5 3

4 5 7 0 7 1 8 8 7 0 7 1 0 6 1 7 8 5 3 : 3 3

6 0 8 6 6 0 2 1 5 0 0 0 0 7 1 . 7 3 : 2 0 2 1 . 0 4 7 1 3

3 0 1 6 . 7 4 1 1 2 E - 0 6 1 4 8 3 : 4 3 : 1 . 5 7 0 7 3

N U M B E R = 7 . 5

L O G O O 2 . 0 1 4 3

E X P 1 8 0 8 . 0 4

bQURRE ROOT 2. 73861

R B S O - O I N T O - O S I G N C r - O

RfiNDOM NUMBER FUNCTIONS

R N D O Z O R N C K N * R N C X - N

2 1 1 2 7 3 1 2 1 1 2 7 3

3-6C

Sample Output: (Cont)

VALUE OF R GIVEN STRING

EVALUATION OF STRING EXPRESSIONS

LENGTH OF STRING:

SUBSTRING POSITIONS 21-31

EXPRESSION

END RT LINE SS®

3-6D

User Functions

In addition to the system functions, BASIC allows the user to
define functions. These functions are local to the BASIC program
that contains them.

The name of a user-defined numeric function consists of the
letters FN followed by a single letter.

Example:
FNA (X)

A reference to a user defined function consists of the name of
the function followed by a parenthesized argument expression.

A user defined function is defined by use of the DEF statement
(see Section 5). For example:

120 DEF FNA (X2) = 3.14 * Xl+2

A user defined function reference may be included as an operand
in an expression. Example:

170 LET Al = 3.14 / FNA (XI)

The argument of a user-defined function may be an arithmetic
expression. The expression in the function reference argument
is evaluated, and the value of the expression substituted for the
argument in the function definition. For example:

180 LET Al = 3.14 * FNA (XI + COS (B(3,4))

3-7

SECTION 4

FILES

DEFINITION

A BASIC file is a set of data external to the BASIC program. A file
is known to the operating system by its association with an
input/output device. The data in a BASIC file are organized into
sequential records. The contents of a file are made available
to the program by the execution of input/output statements that
transmit data between the file and the program.

The PRIME BASIC allows the user to create and use both program and
data files.

PROGRAM FILES

A program file may be created by using the operating system editor
(ED), to create a file consisting of sequentially ordered BASIC
statements. For detials, see NEW USER'S GUIDE TO EDITOR AND RUNOFF,
PDR3104 and REFERENCE GUIDE, FILE MANAGEMENT SYSTEM, PDR3110

Generally, a BASIC program file is created by first, editing a
program in conversational mode, as described in Section 1; then,
using the FILE command, described in Section 1, to write the
program file in storage. For example:

FILE *RANDII'

stores the contents of the program storage area in a file on disk
named RANDII.

After a program file has been created, it may be loaded and executed
by entering BASIC and typing the LOAD and RUN commands. For
example:

BASIC
GO
>LOAD 'RANDII'
>RUN

The word GO and the > character before the LOAD and RUN commands are
responses printed by the BASIC language processor.

DATA FILES

Data files for input to a- BASIC program are created by using the
operating system editor (ED) to create files or by using other
BASIC or FORTRAN programs (Refer to Section 5, DEFINE FILE, for a
description of possible file formats).

4-1

An ASCII file, the most used type of file, is a string of ASCII
characters organized into lines followed by a CARRIAGE RETURN.
A line consists of a contiguous string of characters between a
CARRIAGE RETURN character and the next CARRIAGE RETURN character
in the file. The length of a record in a file can be up to 72
characters, including the commas and the CARRIAGE RETURN. Each
data item in the file must be separated from the other items by
a comma.

Data files are read, manipulated, and written, by DEFINE FILE,
DEFINE READ FILE, READ, REWIND and WRITE statements within any
programs written in the BASIC language, that reference data files.

File Names

The name of a file stored on disk is a string of six or less ASCII
characters enclosed in single quotes. This string is used by the
BASIC interpreter to locate the file. An example of a file name
i s :

'RANDIX'

A file name may also be a parenthesized device name (see Section 5).

File Numbers

A BASIC program refers to files by means of a logical file number.
The range of file numbers is between 1 and 8 inclusive. The corres
pondence between a file name and a file number is established by
the DEFINE FILE (or DEFINE READ FILE) statement. A file is considered
to be open if it is currently assigned a file number; otherwise,
it is considered to be closed.

A DEFINE FILE statement in a BASIC program causes an attempt to
locate the specified file. No error message is printed if the file
cannot be located, unless the file was referenced in a DEFINE READ
file statement, in this case, an error message is printed. However,
even if the absence of a specified file is not detected, subsequent
statements that reference the file may produce an error message.

A file remains open until it is closed. A file can be closed when:

1. control returns from a BASIC program to an operating
system (either normally or abnormally). All files
opened by that program are then closed.

2. a file is closed if its file number is used in a
subsequent DEFINE FILE statement.

4-2

File Expressions

The user can write an expression in a DEFINE FILE statement that is
evaluated to form a file number. The value of this expression
is truncated to an integer if it is a non-integer.

r

r

r
r

4-3

SECTION 5

STATEMENTS

r
This section describes all the BASIC statements implemented by the
Prime BASIC language processor except for the array manipulation
statements. These are described in Section 6.

In all the examples shown in this section and Section 6, the response
character, >, and the INPUT statement prompt character ! are not
shown unless deemed necessary for the purposes of the example.

Table 5-1 is a list of configurations and the extent of the BASIC
implementation on those configurations. Appendix F gives further
details with regard to memory mapping and memory sizes.

r

1

Version of BASIC Memory
Size

BASIC with both MAT and PRINT USING
statements (BASIC)

32K

BASIC with Double Precision (DBASIC) 32K

Table 5-1. List of Configurations and BASIC
System Statement Availability

r
r

5-1

BREAK

The BREAK statement selectively enables or disables breakpoints
at specific statements.

Syntax

BREAK ON Nl,...Nn

or

BREAK OFF Nl,...Nn

where Nl...Nn is a list of statement numbers separated by commas.

If a statement at which a breakpoint is set is accessed during the
execution of a program, control is returned to the BASIC processor
command level (immediate mode) before the statement is executed.

If no statement numbers are specified with a BREAK OFF statement, all
breakpoints previously set ON are set OFF.

Example:

90 BREAK ON 40, 318, 215, 10, 45, 9999

195 BREAK OFF 10, 40

200 FOR X = 1 to 10

210 A = FNA (X)

215 REM, CHECKING VALUE OF A

220 NEXT X

235 BREAK OFF 215

" >

5-2

CALL

The CALL statement is used to interface to a written subroutine that
is user-written in FORTRAN or assembly language.

Syntax

CALL C

or
CALL CfLl. L2....Lnl

where the constant C is an integer that serves as a subroutine
identifier. The value of the constant C is limited only by the
size of available memory; i.e., as many subroutines as will fit
in memory may be called. The subroutine identifier is related to
the address of the subroutine by a user supplied file. The format
and use of this file are described in Section 7, Interface Conventions

Ll...Ln are items in a list that are argument specifications to
the subroutine calling sequence. The argument list may contain up
to 26 items. An argument specification can be a numeric or string
variable, a numeric expression, an array, a subscripted variable
or a function argument. String expressions or string constants
cannot be included in the argument list. Arrays, variables, or
subscripted variables can be redefined by the called subroutine.
However, the value of numeric constants or expressions cannot be
redefined by the called subroutine; they can only be passed to the
called subroutine. All items in the list Ll...Ln must be separated by
commas.

Example

CALL 5 (XI, X2, 6, A(10), X+l)

5-3

CHAIN

Begins execution of another program.

Syntax
CHAIN 'tree-name'

treename is a string constant or expression which is the name of
a BASIC program.

CHAIN is equivalent to: NEW
LOAD tree-name
RUN

f* If errors are detected in tree-name, a message is printed and RUN is
suppressed.
All existing stored programs are deleted, file units are closed and
all variables and arrays are initialized.

CLOSE

^^ Closes the file unit specified by the expression.
Syntax

CLOSE #expression

expression is the file unit to be closed. No error is generated if
the unit is already closed.

r

r
5 - 3A

DATA

The DATA statement allows the user to specify a list of numeric or
string constants within the program. The constants must be
accessed by a READ statement.

Syntax:

DATA Cl, C2, C3,...,Cn

where Cl...Cn are numeric and/or string constants separated by commas
A trailing comma causes an error. The list of string or numeric
constants may be any length as long as the length of the line
is not exceeded. To extend the list of constants more than one line,
it is permissible to write subsequent DATA statements.

The DATA statement is a nonexecutable statement that creates a block
of data to be read by the READ statement. BASIC separates numeric
constants in DATA statements from string constants and maintans a
separate data pool for each type. Any number of DATA statements
can appear at any place in the program. Data from all of the DATA
statements in the program, taken in the order of the DATA statements,
are concatenated to create a block of numeric DATA and/or a block of
string data.

When there are no more DATA items to be read, the program prints
the message:

'OUT OF DATA AT N'

where N is a statement number; and the program terminates.

Examples:

100 DATA 2.3, 3.4, 3.7E02, 1, 2, 3

200 DATA 3.1415, 2.783, 0

300 DATA 'ITEMS', 300 'COST' 1.58

5-4

DEF

The DEF statement defines a function of a single variable.

Syntax

DEF FNA(V)

where A is the function name and V is any variable. V may be an
expression that returns a value. For further explanation, refer to
"User Defined Functions" in Section 3.

The DEF statement defines a single-line function whose value is the
value of any expression that can refer to the optional function
parameters. The type of the expression must be the same as the type
of the function as defined. A particular function cannot be defined
by more than one DEF statement in the same program.

A function parameter (function term) is a scalar variable that is
local to the function body, and a function parameter has no relation
ship to a variable of the same name elsewhere in the program. The
value of the function parameter is set to the value of the corresponding
function argument when the function is invoked.

DEF is a non-executable statement, and a DEF statement can be
written anywhere in the program.

Examples:

20 DEF FNX (B) = 2./COS(B)*3

100 DEF FNO (P) = 3.14159

5-5

DEFINE FILE/DEFINE READ FILE

The DEFINE FILE statement opens the specified BASIC logical file
unit for reading and writing.

Syntax:

DEFINE FILE #E1 = 'S\ M, F2

where E is an arithmetic expression defining file unit numbers (1-8),
S is a string expression specifying tree names or an I/O device,
M is an optional parameter that specifies the mode of the file, and
E2 is an optional parameter that defines file record size.

DEFINE READ FILE #E1 = 'S', M, E2

The DEFINE READ FILE statement functions the same as DEFINE FILE,
except it opens the specified B^SIC Logical Unit for reading only.
The parameters have the same meaning as in the DEFINE FILE statement.
For further examples of usage of DEFINE FILE and DEFINE READ FILE,
refer to Appendix C.

El is an arithmetic expression defining BASIC logical
unit number. BASIC allows eight logical units (1-8).

Device Names

is a string expression defining free name. If the
name starts with a left parentheses, it is interpreted
as a device name of the format: (dxu)

where: d = device identifier
x = don't care
u = unit specifier

Possible values for device identifier are:

A - ASR - pdev = 1
P - PTR/P - pdev = 2
C - Cards - pdev = 3
L - Line Printer - pdev = 4
M - Magnetic Tape - pdev = 5

The unit specifier, u, ranges from 0 to 9. If the
unit specifier is not a digit, the physical unit is
the BASIC unit plus 3.

5-6

Disk File names are one to six characters long and begin with a letter.
I/O device identifiers are enclosed in parentheses and delimited by
single quotes. Valid I/O device identifiers are as follows:

D e v i c e I d e n t i fi e r D e v i c e

r

' (A) ' Teletype (terminal)

«(P)' Paper tape reader/punch

'(LPR)' Line printer

' (C) ' Card reader
1 (MT1)' Magnetic Tape #1
1 (MT2)' Magnetic Tape #2
' (MT3)' Magnetic Tape #3
' (MT4)' Magnetic Tape #4

r

r
r

The standard versions of BASIC do not contain drivers for physical
devices 3 to 5. They can be configured by modifying the BASIC IOCS
configuration module, BASIO, and rerunning the appropriate command
fi l e

File Modes

The optional mode parameter M specifies the mode of the file (i.e., the
kind of file that it is). Possible entries are:

M o d e (M) M e a n i n g

A S C A S C I I fi l e .

ASC SEP ASCII file. When writing to the file, BASIC
inserts a comma between output fields rather
than the spaces specified by the MITE state
ment item separators. The type of file
produced by specifying ASC SEP is suitable for
input to other BASIC programs (i.e., acceptable
to BASIC as a READ file).

B IN B ina ry fi l e . Da ta w r i t t en i n to t h i s t ype o f
file is in internal memory format instead of
being converted to ASCII strings. An arithmetic
item generates two words of data in the file,
a string item generates (C+2)/2 words of data
(where: C is the number of characters in the
s t r i n g) .

5-6A

M o d e (M) M e a n i n g

BIN DA Same as BIN mode, except:

1. Fixed length records are written.

2. The file is opened as a DAM file (Refer
to the Disk and Virtual Memory Systems
User Guide).

3. The POSITION statement operates on the
fi l e .

If the mode parameter, M, is omitted; its value is considered to be ASC,

Record Size

The optional parameter E2 is an arithmetic expression that defines the
record size of a file (number of words/record). The value of E2 may
range from 2 to 512. If the field E2 is omitted, a value of 60 isassumed. The parameter E2 must be specified if mode M is specified
as BIN DA.

Examples of Use of DEFINE FILE:
10 REM CARD TO PRINT CONVERSION, DECK 1000 CARDS

20 DEFINE FILE #1 = '(CRD)'

30 DEFINE FILE #2 = '(LPR)'

f 35 REM N=CARD NUMBER; N$=BLANK OR END OF DECK;* C $ = C A R D I M A G E

50 FOR I = 1 to 10000

60 READ FILE #1, N, C$, N$

70 IF N$ = 'END OF DECK' THEN 99

75 REM STATEMENT 70 SHOWS ONE WAY TO HANDLE END OF FILE
76 REM SITUATIONS

77 REM SEE 'ON END' ...

80 WRITE-FILE #2, C$
90 NEXT I

99 END

5-7

r
r

DIM

The DIM statement defines the number and size of the dimensions of
a numeric array or string array.

Syntax:

DIM A(C1)

or

DIM A(C1, C2)

where A is a numeric or string array name and Cl, C2 are unsigned
numeric constants that specify the upper bounds of the corresponding
dimension.

The DIM statement specifically defines array names, establishes the
number of dimensions (one or two), and specifies the number of
elements in each dimension. The lower bound of each array dimension
is always 0. The upper bound of each array dimension is that value
specified for the element in the DIM statement. (Cl + 1) locations
are allocated for a single-dimension array (vector); and ((Cl + 1) *
(C2 +1)) locations are allocated for a two-dimension array.

Any number of DIM statements can appear in a program. However, an
array name can be explicitly defined by a DIM statement only once in
a program. (However, it can be redimensioned any number of times by
subsequent MAT statements). A DIM statement is nonexecutable.

Examples:

100 DIM A(12)

declares a one-dimensional numeric array of thirteen locations
(A (0) . . .A (1])) .

300 DIMA$(2,3)

declares a two-dimensional string array of 3 columns (0, 1, 2) and
4 rows (0, 1, 2, 3).

NOTE: The arrays defined by DIM statements may be used later as
matrices (e.g., the set of array dimensions that are non
zero). These operations are discussed in Section 6.

5-8

PTU59 REV. 16 INTERPRETIVE BASIC

PTU 59

REV. 16 INTERPRETIVE BASIC

This document corrects and adds to The Interpretive BASIC Programmer's
Guide, Rev. B (IDR1813).

STATEMENTS

The following replaces the description of ENTER on page 5-9.

ENTER

ENTER #

Both forms of this statement (ENTER and ENTER #) allow a numeric or
string variable to be entered from the terminal. In addition, a time
limit may be specified for entry, the actual time used returned, and,
for ENTER # , the user number assigned at LOGIN time is returned.

Syntax

ENTER time-limit, time-lim-val, variable

ENTER # user-num-var [, time-limit, time-lim-val, variable]

time-limit The time, in seconds (1-1800) , allowed for terminal
input.

Time-lim-val The variable in which the actual time used for
input, in seconds, is returned. If time-limit is
exceeded, its negative, -time-limit is returned.

variable The variable, either numeric or string, for which a
value is expected from the terminal. If no value
is input during the allotted time, variable is set
to 0 (numeric) or null (string) .

user-num-var The variable which receives the user's login number
(ENTER # only) . To display this value, type the
command PRINT user-num-var.

Comments

ENTER and ENTER # do not display prompt characters. If inputs for
these statements are to be prompted, use a PRINT 'prompt-string'
statement prior to ENTER or ENTER # .

5 9 - 1 F e b r u a r y 1 9 7 9

END

The END statement terminates execution of the BASIC program.

Syntax
END

The END statement indicates the end of the main program. It is
equivalent to and has the same function as the STOP statement.

Examples:
9999 END

When this statement is executed, the message:

END AT 9999

is printed.

ENTER

The ENTER statement is a timed input statement.

Syntax
ENTER #var
ENTER #var,expr,evar,isar
ENTER #var,expr,evar,isar
ENTER expr,evar,ivar
ENTER expr,evar,isvar

#var is the current user number
expr is the time limit expression in seconds, from 1 to 1800
evar is the elasped time for input. If no .NL. is typed with

expr seconds, evar is set equal to -expr.
ivar"] is the variable entered. If a time out occurs, itI is set to whatever value has already been typed on the
isar J line.

Notes

The erase and kill characters are supported.

CONTROL-G does not cause an END OF DATA AT LINE
xxxx to occur.

—. ^ If input is a string, then ENTER behaves like an
f I N P U T L I N E s t a t e m e n t .

r

r No prompt character is printed.

FOR

The FOR statement defines the beginning of a loop., (sequence of
statements to be executed more than once within the program).
The NEXT statement must be used subsequent to the FOR statement
to define the end of the loop.

Syntax

FOR V = El TO E2

or

FOR V = El, E2

or

FOR V = El TO E2 STEP E3

or

FOR V = El TO E2, E3

or

FOR V = El, E2, E3

where V is a scalar numeric variable; and El, E2, and E3 are
numeric expressions. The variable V is the control variable of the loop,
The first expression (El) defines the initial value of V. The
second expression (E2) defines the final value of V. The expression
E3 is optional and is the incremental value added to V when the
subsequent NEXT statement is executed. The words TO and STEP may be
omitted and replaced by commas.

When tne "STEP E3" or "E3" term is omitted, the value +1 is used.

The value of the control variable (V) can be modified within the
loop. Its value will be available at the end of the loop. Also, the
loop may contain statements that jump out of the loop.

FOR-NEXT loops can be nested indefinitely as long as available memory
is not exhausted. FOR-NEXT loops cannot be interleaved. A nested
FOR-NEXT loop cannot use the same control variable as the FOR-NEXT
loop that contains it.

5-10

REM ANOTHER EXAMPLE
10 PRINT •PLEASE SPECIFY
12 INPUT
14 PRINT •PLEASE SPECIFY
16 INPUT
20 DIM B(IOOO)
30 FOR 1 = N TO M STEP .1
40 LET B(I)=3.1416*IT2
50 PRINT I f B (I >
60 NEXT I
66 STOP

RUN
PLEASE SPECIFY N;
2
PLEASE SPECIFY W;
3 .5
2 12.5664
2.1 13.8545
2.2 15.2053
2.3 16.6191
2 .4 18.0956
2 .5 19.635
2 .6 21.2372
2 .7 22.9022
2 .8 24.6301
2 .9 26.4208
3 28.2744
3.1 30.1907
3.2 32.17
3.3 34.212
3 .4 36.3169
3 .5 38.4846

Mi

STOPPED AT LINE 66

The next example of FOR-NEXT assigns values to the elements of
a single dimension array.

110 DIM X(10)

110 FOR I = 0 TO 10

120 READ X(I)

140 NEXT I

300 DATA 0,1,2,3,4,5,6,7,8,9

One of the common reasons for using FOR-NEXT loops is to deal
with two-dimensional arrays. The idea is to use two subscript

5-11

variables to point to the column and row of the array controlled
by a loop. This is illustrated in the following example:

100 READ C1,C2
110 FOR 1=1 TO Cl
120 FOR J=l TO C2
130 LET A(IfJ>=0
140 NEXT J
145 NEXT I
148 REM ELEMENTS OF ARRAY ASSIGNED TO ZERO
150 READ C3
160 IF C3=0 THEN 300
170 READ C4,X
130 LET A(C3,C4)=X
190 GOTO 150
200 REM STATEMENTS 150 TO 190 ASSIGN VALUES FROM THE DATA LIST TO
202 REM ELEMENTS OF ARRAY A.
300 FOR 1=1 TO Cl
305 FOR J=l TO C2
310 PRINT AU,J)
320 NEXT J
325 PRINT
330 NEXT I
350 REM ABOVE LOOP PRINTS VALUES OF ARRAY ELEMENTS.
400 DATA 394
405 DATA 1,1,16,1,2,256,1,3,512,1,4,1046
410 DATA 2, l ,34,2,2,300,2,3,13,2,4,9.87654E+08
420 DATA 3,1,99,3,2,88,3,3,7777,3,4,56
440 DATA 0
999 END

RUN
16
2 5 6 Va l u e s a s s i g n e d t o A (1 , 1) , . . . , A (1 , 4)

1046

34
300
1 $ Va l u e s a s s i g n e d t o A (2 , 1) , . . . , A (2 , 4)
9.87654E+08

99
83
7 7 7 7 Va l u e s a s s i g n e d t o A (3 , 1) , . . . , A (3 , 4)
56

END AT LINE 999

5-12

GOSUB

The GOSUB statement allows control to be passed to an internal
subroutine.

Syntax

GOSUB N

where N is a statement number in the program which specifies the line
at which the internal subroutine is to start. The subroutine must
contain a RETURN statement.

The GOSUB statement saves the line number of the statement that
follows it, and then transfers to the statement specified by the
line number N. When a RETURN statement is subsequently executed,
control returns to the statement whose line number was saved (i.e. the
statement that follows the referencing GOSUB statement).

A subroutine may itself contain a GOSUB statement. Up to eight
GOSUB statements may occur before the execution of a RETURN statement.
RETURN always causes control to be returned to the statement follow
ing the most recent outstanding GOSUB statement.

Examples:

173 GOSUB 1000

The following is an example of a trivial but valid program; the
statements are executed in the order: 10, 30, 50, 70, 60, 40, 20.

10 GOTO 30

20 STOP

30 GOSUB 50

40 RETURN

50 GOSUB 70

60 RETURN

70 RETURN

5-13

GOTO

The GOTO statement causes program control to be passed to a non
local, designated statement.

Syntax

GOTO N

where N is a statement number of a valid statement.

The GOTO statement causes program execution to continue at the
statement specified by N.

Examples:

10 GOTO 75

200 GOTO 400

Example use of GOTO:

100 PRINT 'INITIAL VALUE'

110 INPUT I

120 PRINT 'TYPE CHANGE'

130 INPUT C

135 REM C IS + OR -

138 IF C = 0 THEN 999

140 LET I = I + C

150 PRINT 'NEW VALUE IS' , I

160 PRINT

180 GO TO 120

999 END

14

IF

The IF statement allows processing to be dependent on the true
or false value of a relational expression.

Syntax
IF El rel E2 THEN N

or

IF El rel E2 GO TO N

f where El and E2 are either both numeric expressions or both string
expressions; rel is one of the following relational operators:

Operator Meaning
< l e s s t h a n

> g r e a t e r t h a n

^ k < = o r = < l e s s t h a n o r e q u a l
>= or => greater than or equal

= e q u a l

<> or >< not equal
N is either a statement number or a statement, including another
IF statement. (N can only be a statement if the verb is THEN.)

j If El arid E2 satisfy the relation specified by rel, control istransferred to the statement specified by N; otherwise, execution
continues with the statement that follows the IF statement.

Note

Attempting to compare a string to a numeric
item is flagged as an error

100 IF A = B$ GOTO 1000
causes a mixed mode error when entered.

r
5-15

Examples

100 IF A$ = 'YES' THEN 125

200 IF ABS (X-Y) < El THEN 75

205 IF C1=>C2 GOTO 50

305 IF X <>0 THEN IF X < 100 GOTO 402

402 IF (TAN(X9)-1) = (T(J*2-1) t 3 THEN 350

If any of the above conditions are false, program execution continues
with the statement that follows the IF statement.

5-16

INPUT

The INPUT statement requests data from the user terminal.

Syntax

INPUT LI, L2,...Ln

where Ll,...Ln is a list of references separated by commas. Trailing
commas are ignored. If more items are input then are on the
specified list Ll...Ln, the additional items are discarded.

The INPUT statement causes data to be read from the users terminal
and assigned to the references in the list Ll...Ln in the order
that they are typed. If there are any array references in the list
Ll...Ln, subscript expressions are not evaluated until all references
that precede the subscript expressions in the input list have been
assigned values.

The INPUT statement prints the prompt-character, !, to
indicate that input is desired. The user must be sure to type
input as his program requires.

Data items provided by the user must match the data type of the
corresponding reference in the list, Ll...Ln, in the INPUT state
ment.

A single quote may be combined in a string typed in response to an
INPUT statement. It is transferred literally to the program area.
Example, typing:

ABCD

in response to an INPUT statement puts the string, ABCD, in the
program storage area.

When a numeric value is expected, all characters up to the next comma
or CARRIAGE RETURN are input to the program. Spaces, blanks and tabs
are ignored.

5-17

Examples

10 INPUT II

20 FOR 12 = II, 10

30 INPUT A (12)

40 NEXT 12

Sample Output

RUN

!6

112345

11.3141579

!2.45

19999999999

!34

In the above example, the ! characters are typed by the system;
the numbers are input by the user in response to them.

Interrupting INPUT

The user can stop typing in a series of values in response to an INPUT
statement in his program and return to BASIC command level by typing
CONTROL-C (pushing the control and C key simultaneously. Example:

>10 INPUT A, B, C, D, E
>20 PRINT A, B, C, D, E
>RUN
! 1, 311 CTL-C HJser interrupts INPUT
END OF DATA AT LINE 10 ^-Response from BASIC
> - (- R e t u r n h a s b e e n m a d e t o

command level

5-18

INPUT LINE

Reads one line from the user terminal into a specified string
variable or an array element.

Syntax

INPUT LINE svar

svar is the string variable in which the line is to be stored.
If the line is completely blank, svar is set to one space.
Trailing blanks are not included in svar.

r

r

r
18A

LET

The LET statement allows an arithmetic variable or string variable
to be assigned a value.

Syntax

LET V = E

o r

V = E

where V is a numeric variable or a string variable, and E is an
expression of the same data type as V.

The LET statement assigns the value of an expression to one or
more scalar variables or subscripted array elements. Subscripts
in the expression E are calculated before the expression is
evaluated and before any assignment is done.

Scalar arithmetic variables not explicitly assigned a value are
assigned a default value 0 when first referenced in a program.
Unassigned scalar string variables are assigned a value of a null
s t r i ng (' ') .

Array elements not explicitly assigned a value are given a default
assigned value when the array is referenced. (See Section 2.)

Note

lents of the fom

100 A + 2 =
110 A / B =
120 A + I =
130 A - 2 =
140 A 2 =

Cause run time errors; they are not trapped
at statement entry.

5-19

Examples

10 I = 20

20 LET I = 2

100 LET X(5) = 24

102 LET V = C

110 LET A$ = 'STRING OF CHARACTERS'

120 LET A$ = B$ + C$

440 LET 13 = 5

500 A(J) = SIN(X-4.5) + Q3

500 LET S$(J+5) = M$ + \00»

MARGIN

Specifies width of user console line in characters for output
generated by the PRINT and PRINT USING statements.

Syntax

MARGIN expression

expression is the number of characters; the range is 2 to 160
inclusive. A value outside the range causes an
MV error.

Once set, the margin specification remains in effect for the terminal
session unless changed by another MARGIN statement.

20

NEXT

NEXT is used in conjunction with the FOR statement to increment
the control variable of the FOR-NEXT loop.

Syntax

NEXT V

where V is the control variable used with the previous FOR
statement.

Refer to the description of the FOR statement for further details

The NEXT statement marks the end of a FOR-NEXT loop; it is always
used in conjunction with a preceding FOR statement.

Example

700 FOR I = 1 TO 100

705 LET A = A + 1

713 NEXT I

5-20A

ON

ON allows control to be passed to one of a list of statements
depending on the value of an expression.

S y n t a x r
ON E f GOTOlNl, N2, N3...Nn

\GOSUB(

where E is an expression and Nl...Nn are numeric expressions
separated by commas that represent statement numbers.

The ON statement uses the value of the numeric expression to select
one of the statement numbers as the target of a GOSUB operation.
The value of the expression is truncated to yield an integer that
must be positive and also must be less than or equal to the number
of statement numbers (Nn) specified in the ON statement.

Examples:

20 ON (I) GOTO 100, 200, 300, 400

If I = 1, control goes to statement 100; if I = 2, control goes
to 200; if I = 3, control goes to 300; and if I = 4, control goes
to 400.

The ON statement is useful because the IF statement provides only
a two-way branch in a program. The ON statement can provide more
alternatives (i.e., a multi-way branch).

ON END

The ON END statement directs the transfer of control to a given
statement when an End of File is reached during a READ or POSITION
operation on the unit specified in the ON END statement.

Syntax

ON END #E GOTO N

where E is an expression that specifies a BASIC logical unit (1-8)
(Refer to DEFINE FILE); and N is a statement number. The ON END
statement does not test for End of File; it establishes action to
be taken when the last file record is read.

5-21

E x a m p l e : * ^ %

10 DEFINE FILE #1 = 'INPUT'

40 ON END #1 GO TO 20

50 READ #1, A$, A, B$, B

ON ERROR

Specifies control transfer if an error is detected during a read,
write, or define operation.

ON ERROR #unit GOTO statement-number

u n i t fi l e u n i t e x p r e s s i o n (1 - 8) f o r w h i c h t h e e r r o r
test is to be performed.

statement-number location to which control is to be transferred
if error occurs.

Note

ON ERROR does not test the current status of unit,
but defines an action to be taken if a future~error
of the type defined above occurs.

POSITION

POSITION positions a file on the unit specified to the start of the
record specified.

Syntax

POSITION #E1 TO E2

where El is an expression that specifies the BASIC logical unit (1-8)
and E2 is an expression that specifies the record in the file. Record
numbering starts at one. The unit (El) must have been defined to be
BIN DA mode (refer to DEFINE FILE).

If the record number specified is greater than the number of records
in the file, the file is positioned to the End of File and the ON END
action is taken.

5-22

PRINT

The PRINT statement causes information to be printed at the terminal

Syntax

PRINT LI, L2,...,Ln

where LI...in are 0 or more items in a list separated by commas or
colons. Individual list items Ll...Ln may be either numeric
expressions or string expressions.

The PRINT statement generates lines of output to be printed at the
terminal. A single PRINT statement can generate either one line,
several lines, or partial lines of information.

The format of the terminal line image is determined by the
elements in the print list. Each element in the list Ll...Ln is
evaluated to yield a string of characters to be placed on the
terminal print line.

Printing Numeric Expressions

A PRINT list item that is a numeric expression is evaluated and
converted to the equivalent character string representation. This
string begins with the sign character and ends with a blank.

If the value of the expression is positive, a blank is printed for
the sign character. If the value of the expression is negative,
a minus sign is printed for the sign character.

Integers: Numbers printed as integers consist of a string from oneto six decimal digits without a decimal point. Examples:

14

-20796

1

Fractions: Numbers up to six decimal digits may be printed with a
decimal point.

Fractional format is used for nonintegers with an absolute image
in the range .1 to 99999.5. Examples:

5-23

2.5

12.4 3

-0.00796

0.00371

7.74186

Scientific Format: A number printed in scientific format is of
the form:

X E + Y

or

X E - Y

where X is a fractional number greater than one and less than ten,
and Y is an integer power of 10 ranging from -38 to +38. Scientific
format is used whenever integer or fractional format cannot be used
as shown in the following example:

LET X = 999999

LET X = X+l

PRINT X

results are printed:

1.0 E+6

Other examples of numbers in scientific format are:

2.54 E+13

5.0 E+5

-1. E-32

Printing String Expressions

A string expression in the PRINT list Ll...Ln is evaluated and
the resulting string of characters is printed in the output at the
teletype. BASIC does not interpret contents of this character
string; therefore, unpredictable results may occur from the inclusion
of characters that do not advance the print line by one position
(such as combinations of a backspace with other characters).

5-24

Comma Separator

The output from the PRINT statement is normally divided into zones
of 14 characters each. The first zone starts in column 0, the
second in column 14, etc. The number of zones is determined by
characters, five zones are printed.

A comma in a print list causes the Teletype to advance to the first
character position of the next available zone. If character over
flow occurs, the current line is printed and a new line is started.
If the last element of the print list is a comma, the partial line,
if any, is printed; and the Teletype is positioned at the start
of the next available zone.

Example Use of Comma in PRINT Statement

The statement:

100 PRINT I, J, K, L

might result in the following output:

1 . 0 2 . 4 1 . 4 1 6 7 5

Colon Separator

A colon in a PRINT list is used to separate PRINT elements and
inhibits the printing of items in different zones. A colon
specifies that the preceding items to be printed is to be followed
by a space rather than the number of spaces required to position
to the next print field.

Examples of Use of Colon in PRINT Statement

The previous example written as follows:

100 PRINT I: K

causes the following output:

1.0 1.416

The statement:

200 PRINT 'A': 'B\ 'CAT': 'DOG'

p r i n t s :

A B C A T D O G

5-25

Tab Request

The tab print element requests that the Teletype be moved to a
specific character position (column). The tab request is written
as:

TAB(E)

where E is a numeric expression. An example of the tab request
i s :

100 PRINT X: TAB(40): Y

PRINT List Termination

If the print list does not end in a comma or colon, a CARRIAGE
RETURN character is appended to the print output and the line is
transmitted to the terminal. A null (empty) PRINT list causes the
previous line to be finished or a blank line to be printed.

PRINT Statement Examples

20 PRINT X, SIN (Z 2 - Y 2)

30 PRINT 'VALUE IS': X-Y

40 PRINT ' ', A$ + SUB (B$, I, J)

50 PRINT

Example of Use of Print for Conservational Input/Output

10 PRINT 'ENTER LENGTH IN INCHES' :

20 INPUT L$(l,l)

30 LET X4 = L(l,l)/12

40 PRINT X4: 'FEET'

Sample results:

ENTER LENGTH IN INCHES ! 30

2.50 FEET

5-26

PRINT USING

A formatted print-statement (the PRINT USING statement) generates
formatted output.

Syntax

PRINT USING S$, LI, L2...Ln

o r

PRINT USING S$, Li: L2...Ln

where S$ is a string expression and Ll...Ln are items in a list
that are string or numeric expressions specifying values to be
printed, separated by commas or colons.

A single PRINT USING statement can generate one line, several lines,
or a partial line of printed output. The characters generated by
a PRINT USING statement are formatted as specified by a control
s t r i ng .

Format Fields

The string specified by S$ contains a description of the editing
to be applied to the values in the list Ll...Ln. The string S$
is divided into a series of fields each of which controls the
formatting of a single value in the PRINT list Ll...Ln. The fields
describe a numeric or string value.

There are seven special characters for defining numeric fields in the
format. These characters are:

. , i + - $

Their use in a format field is described in the following tables
and paragraphs.

There are three special characters for defining string fields in
the format. These are:

< > #

Their use in a format field is described under the heading "String
F i e l d s " . 6

5-27

Numeric Fields

Pound Sign (#): For each pound sign in the field descriptor, a
digit (0-9) from the output value is substituted. Examples are
shown in the following table.

F ie ld Format Datum Representat ion

2 5 2 5

#£###

#####

#####

.-30

1.95

598745

30

* * * * *

Remarks

Right justify digits
in field with leading
blanks.

Signs and other non-
digits are ignored.

Only integers are
represented; the
number is rounded
to an integer.

If the datum is too
large for th^ field,
all asterisks are
pr in ted .

Table 5-2. Pound Sign in Descriptor Field

Decimal Point (.): The decimal point places a decimal point within
the string of digits in the fixed character position in which it
appears. Digit positions to the right of the decimal point are not
blank filled. Examples are shown in the following table.

Field Format Datum Representation Remarks

#####.## 20 20.00 Fractional positions
are filled with zeroes

#####.## 29.347
0.079

29.35
0.08

Rounding occurs on
f rac t i ons .

#####.## 789012. 34 * * * * * * * * When the datum is too
large, a field of all
asterisks, including
the decimal position,
is printed.

Table 5- 3. Decimal Point in Descriptor Field

5-28

Comma (,): A comma in a descriptor places a comma in the output
record at that character position unless all digits prior to the
comma are zero. In that case, a space is printed in that character
position. The following table gives examples of use of the comma.

r

r

Field Format

+ $, # # # . # #

+ $ # , # # # . # #

+ + # # # # #

Datum

30.6

Representation

+$ 30.60

2 0 0 0 + $ 2 , 0 0 0 . 0 0

0 0 0 3 3 + 0 0 , 0 3 3

Remarks

Space printed for
comma when leading
digit is blank.

Comma printed.

Comma is printed
when leading zeroes
are not suppressed.

Table 5-4. Comma in Descriptor Field

Vertical Arrow (t): A string of four vertical arrows can be used
to indicate an exponent field which is filled by E+n where n is a
two digit integer. The following table gives examples of use of the
vertical arrow.

Field Format Datum Representation

+##.## t ttt 170.35 +17.04E+01

+##.## t r T t _.2 -20.00E-02

++##.## tttt 6002.35 +600.24E+01

c
r

Table 5-5. Vertical Arrow in Descriptor Field

Plus or Minus Signs (+ -): A single plus sign as either the first
or last character in the format descriptor causes a + to be output
if the data item is positive, or a - if the data item is negative.

Two or more plus signs starting at the first character of the
descriptor cause the sign to be output (+ if positive, - if negative)
immediately to the left of the most significant nonzero digit of
the output item. If required, the second through the last plus sign
are used as digit positions as required by the magnitude of the
number provided in the datum.

A minus sign (or signs) has the same effect as plus signs , except
a space is output for a positive sign. The following table gives
examples of the use of + or - in formatted print output.

5-29

Field Format Datum

+##.##

+##.##

+##.##

20.5

1.01

-1.236

Representation

+20.50

+ 1.01

- 1.24

Remarks

Blanks precede the
number.

* >

* >

+##.##

- - . # #

.##

-234.0 * * * * * *

-200 * * * * * *

2.00

When the datum is
too large for the
specified format a
field of all asterisks
is printed.

###.##- 20.5 20.50

###.##- 000.01 0.01 The last leading
zero before the
decimal point is
not suppressed.

###.##- -1.236 1.24-

###.##- -234.0 234.00-

- - - . # # - -20 -20.00 Second and third
signs are treated
as digit positions
(#) on output.

When the datum does
not agree with the
specified field,
asterisks are printed,

Table 5-6 Plus and Minus in Descriptor Fields

5t30

Dollar Sign ($): A single dollar sign as either the first or second
character in the descriptor causes a dollar sign to be output in
that position of the output record.

Multiple dollar signs starting at either the first or second
character of the descriptor cause a dollar sign to be placed
immediately to the left of the most significant nonzero digit.
The only character that may precede a dollar sign in a format
descriptor is a fixed sign (+ or -). The following table gives
examples of use of the $ in formatted print output.

RemarksField Format Datum Repres entation

-$###.## 30.512 $ 30.51

$###.##+ -30.512 $ 30.51-

+$$$$#.## 13.20 + $13.20 Extra $ signs may
be replaced by digits
as with floating
+ and - signs.

$ $ # # . # # - - 1 . 0 $ 0 1 . 0 0 - L e a d i n g z e r o e s a r e
not suppressed in the
part of the field.

Table 5-7. Dollar Sign in Descriptor Field

String Fields

Pound Sign (#): Each pound sign in the descriptor field represents
a character position from the second to the nth character position.
A character from the output (i.e., letter, numeral, or symbol) is
substituted in that position.

Examples are shown in Table 5-8 .

Left Angle Bracket (<): This character in a descriptor field is
always positioned first when it is used. It represents the first
character position and the first character from the output is
substituted for it. It also designates that the output string is
to be left justified in the PRINT statement field. An example is
shown in Table 5-8

5-31

Right Angle Bracket (>): This character in a descriptor field is
always the first character of the field. The first character of the
output is substituted for it and it designates that the output string
is to be right justified in the PRINT field. Table 5^8 shows an
example.

F ie ld Fo rma t Da tum Represen ta t i on Remarks

> # # # # # # T W E L V E T W E L V E r i g h t - j u s t i fi e d
< # # # # # # T W E L V E T W E L V E l e f t - j u s t i fi e d

Table 5-8. String Descriptor Fields

Print Using Statement Example

150 REM *****EttflMPLE TO SHOW VARIOUS USES OF PRINT USING.
160 REM
170 INPUT A, B, C
188 LET E*=-"E;v-~l"
190 PR INTUSI NG -' <#################### -.. ES-
280 PR 1 NTUS ING •'>####################•-, e*
210 REM LAST TWO LINES SHOW HOW JUSTIFICATION WORKS.
228 LET FJP= •'-##. ##•'
218 PRINTUSING F*, A, B, C
248 PRINTUSING -"**#####. ##', A, B. C
258 PRINTUSING •>########## TO 2'', E*
260 REM NOTE CONCATENATION, RESULT IS PLACED IN FIELD SPECIE I ED.
270 INPUT X
288 PRINTUSING •' ##.##■', SQROO

Sample Output

>dUii
! ^ 3 . 0 4 , 3 o 4 5 . 9 3 , 4 5
iLX— 1

u. A A

<d3.34

45. JJ
S J J J ^ 3 . o 4
SJ3545.93
:'t>JJJ4i>. JJ

iX—1 TO id
!(S54
2 5 . 5 7

5-32

Printing Special Characters

To print a literal copy of one of the characters used with special
meaning in a format field, a string field must be used with the PRINT
statement and the character must be passed as part of the print list.
For example, the following statement prints a period at the end of the
output line.

10 PRINTUSING 'X IS -### ':'.',X

If the statement were written

10 PRINT USING 'X IS -###.',X

the decimal point would be part of the numeric field output.

5-33

READ

The READ statement is used in conjunction with a DATA statement.
DATA defines a series of data values (literals); READ sets a list
of variables equal to literals in the numeric and/or string data
pools.

Syntax

READ LI, ..., Ln

where LI, ..., Ln is a list of references, which may be numeric
variables, string variables or arrays, separated by commas.

The READ statement causes numeric or string values stored in the data
pools by DATA statements to be assigned, starting at the next avail
able element in the applicable data pool. The assignments are made
in the order specified by the references in the list specified with
the READ statement.

Subscript expressions in an array reference in the list LI, ..., Ln
are not evaluated until all preceding references have been assigned
values.

If a data list is exhausted, a message is printed and program
execution is halted.

The RESTORE statement may be used to prepare to read the data again.

Examples:

100 READ X, Y, Z

110 READ X$, X, Y$, Y, Z$, Z

120 READ X(3)

For examples of READ, all of the DATA are treated as a single list
of numbers. Each READ operation takes the next available number
from the list and advances one position on the list. The following
example illustrates this principle:

5-34

10 DATA 1.314 1.817

20 DATA 1, 2, 3, 5, 8, 13, 21, 34

30 DATA 55, 89

40 READ Nl

50 READ N2

60 FOR Kl+Nl, N2

70 READ A(K1)

80 NEXT Kl

90 RESTORE

READ FILE

Input may be read from a formatted file prepared by the system
editor, from a file created by another BASIC program or from a
binary file created by a FORTRAN program. The format of the files
and their types and modes is defined by the DEFINE FILE statement.

Syntax

READ #N, LI, ..., Ln

where N is a file number and LI, ..., Ln are a list of all numeric
variables or all string variables separated by commas.

This variation of the READ statement reads from the file specified
by #N.

Initially, the READ FILE statement forces the reading of a new
record. The READ FILE statement reads values from the file starting
with the first data item in the record currently pointed to and the
file pointer is incremented by 1 after each data value is read.

If a file number specified in a READ FILE statement has not been
defined in a previous DEFINE FILE statement, the message:

ERROR UF AT LINE N

(where N is a statement number) is printed and execution of the BASIC
program halts, and the user's program returns to BASIC command level.

Examples:

100 READ #4, V(I), A

110 READ #4, Al, A2, A3

5-35

READ * FILE

Syntax

READ * #N, LI, ... Ln

The READ * FILE statement has the same effect as the READ FILE
statement except it does not initially force a new record to be
read from the unit specified. If data remains in the last record
read from the unit, it is used before the new records are read.

READ LINE

Reads one line from a specified file into a specified string variable
or array element.

Syntax

READ LINE #var svar

var is the file unit number

svar is the string variable in which the line is to be stored.
If the line is completely blank, svar is set to one space.
Trailing blanks are not included in svar.

REM

This statement identifies a remark. It is not executed.

Syntax

REM S

where S is any string of ASCII characters not including the carriage
return character.

The string of characters following REM is ignored by the BASIC
interpreter. The REM statement has no effect on the program; it
is provided for the convenience of the user.

Example:

10 REM PROGRAM TO PERFORM MEDIA CONVERSION
20 REM MLG MODIFIED BY SDH 10-15-72
30 REM
40 -REM

5-36

RESTORE

The RESTORE statement resets the DATA list pointer so that the list
may be re-used by subsequent READ statements in the program.

Syntax

RESTORE
RESTORE #
RESTORE $

The RESTORE statement re-initializes either or both of the data pools
The next read statement executed reads the first data item in the
pool or pools restored.

The RESTORE statement resets each data pool. The RESTORE $ statement
resets the string data pool only. The RESTORE # statement resets
the arithmetic data pool only.

r

r
r

5-36A

Example

112 READ A, B

115 LET C= A*B

120 PRINT A: '@' B, "PRICE": C

130 RESTORE

135 READ Z

140 PRINT 'NO OF ITEMS IS':Z

900 DATA 100, 3.50

Output is:

100 @ 3.50 PRICE 350.

NO OF ITEMS IS 100

RETURN

The RETURN statement causes control to be returned from the sub
routine that contains it to the statement immediately following
the GOSUB statement that invoked the subroutine (i.e., the last
outstanding GOSUB).

Syntax
RETURN

5-37

Examples:

100 INPUT A
110 GOSUB 300
111 INPUT A$
120 IF A$ <> 'END' THEN 100
130 END

300 REM 'SUBROUTINE TO CALCULATE IF A'
301 REM 'NUMBER N IS PRIME'
310 FOR X = (A-2) TO 1 STEP -1
320 LET Ql = A/X
325 LET Q2 - INT(X.X)
330 LET R = Ql - Q2
340 GOSUB 400
350 NEXT X
360 IF R = 0 THEN 380
370 PRINT 'NUMBER' :A: 'IS A PRIME'
380 RETURN
400 IF R >< THEN 420
410 PRINT 'NUMBER' :A: 'IS NOT A PRIME'
420 RETURN

The RETURN statement in statement number 380 causes a return to the
statement 111; the RETURN statement in 420 causes a return to 350.

REWIND

The REWIND statement causes the specified I/O unit to "rewind".

Syntax

REWIND #N

where N is an arithmetic expression defining a file unit (1-8).

If the REWIND statement refers to a disk file, it is reset to start
from the first record.

Examples:

100 DEFINE FILE #4 = 'ALPHA'
110 INPUT N
120 FOR I = I TO N
130 READ #4, A
140 NEXT I
150 REWIND #4

5-38

STOP

STOP causes the program to return to command level.

Syntax

STOP

Any files opened by the program are closed. Executing a STOP
statement in a program is equivalent to an END statement.

Example

9999 STOP

causes a message to be printed such as:

STOPPED AT 9999

TRACE

The TRACE statement is used to turn trace mode ON or OFF.

Syntax

TRACE ON

o r

TRACE OFF

When trace mode is ON, the statement number of each statement is
printed prior to its execution.

5-39

TRACE is useful in debugging a program that contains many GOTO
and/or GOSUB statements.

Examples: 110 TRACE ON
115 FOR I = 1 TO 10
120 A3 = Al + FNX (I) -3.1
130 IF A3 < 0 THEN 400
150 GOSUB 6000
160 IF A3 = 0 THEN 500
170 GOSUB 7500
180 IF A3 > 0 THEN 600
190 GOSUB 9000
195 NEXT I
200 TRACE OFF

Assuming all conditions are true (in the first pass) a partial view
of the trace might look as follows:

[115]
[120]
[400]
[401]

[499]
[150]
[6000]

[6099]
[170]
[7500]
[7502]

[7550]
[180]
[600]

[650]
[190]
[9000]
[9010]
[9020]
[195]
[115]

5-40

WRITE FILE

The WRITE FILE statement directs output to a file.

Syntax

WRITE #N

o r

WRITE #N, Ll,...Ln

where N is an expression that yields a file number (1-8) and
Ll,...Ln is an optional list of all numeric variables or all string
variables separated by commas or colons.

A print element in the list can be an expression or a TAB request.

WRITE statement output lines are appended to the specified file in
a stream.

Either full lines (terminated by a CARRIAGE RETURN character) or
partial lines (terminated by a comma or colon) may be output to a
fi l e .

Read After Write Check

If an attempt is made to read on a unit after a WRITE has been
performed, without an intervening REWIND or redefinition of the unit,
a WR error diagnostic is printed. This check does not apply in the
case of writing BIN DA files.

5-41

Example

10 DEFINE FILE #1 = '(LPR)'

20 FOR I = 1 TO 100

30 WRITE #1, 'ITEM-':X, 'COST-$ ' Y, 'ONE EACH'

40 NEXT I

120 DEFINE FILE #2 = 'ALPHA'

130 FOR X = 1 TO 100

135 LET N = X2

140 WRITE #2, X, N

150 NEXT X

Statements 10 to 40 print 100 lines on the line printer (if it is
assigned); statements 120 to 150 consecutively write 100 values
of X and 100 values of N onto a disk file ALPHA.

WRITE USING

Formatted output strings may be passed to a file by means of the
WRITE USING statement.

Syntax

WRITE USING S$, #N, Ll,...,Ln

where N is a file number (1-8); S$ is a string expression, as in
the WRITE USING statement; and Ll,...,Ln are a list of expressions
separated by commas or colons.

This variation of the WRITE USING statement directs output to be
appended to a Teletype formatted file. A single WRITE USING state
ment can generate one line, several lines, or a partial line of
output.

Example:

140 WRITE USING 'X COST IS $###.##', #3, A

" >

" >

5-42

SECTION 6

MATRIX MANIPULATIONS

AND

MATRIX STATEMENTS

The BASIC statements discussed in the previous section permit the
elements of a matrix to be defined and used on an element by element
basis. The MAT statement, discussed in this section, allows matrices
to be manipulated as a unit. In addition to the individual examples
given in this section, examples showing the use of the MAT statement
are given in Appendix A.

Although the arrays have a column number 0 and a row number 0, the
MAT statement ignores all matrix elements that have one dimension
equal to zero (i.e., the MAT statement manipulates vectors and
matrices, 0 elements are indeterminate).

MATRIX REDIMENSIONING

The original bounds and the current bounds are determined by the
DIM statement, or by the default bounds value (10) or (10,10), or
by the first MAT statement that references a matrix. The current
bounds of a matrix can be changed within certain constraints.

The total amount of storage defined by the current bounds must be
less than or equal to the amount of storage set aside for the
original bounds. For example:

100 DIM A (10, 10)

300 MAT A = ZER (5, 5)

400 MAT A = ZER (3, 24)

500 MAT A = ZER (2, 29)

are all legal redimensions of the matrix A; but:

550 MAT A = ZER (5, 25)

is not legal redimensioning of matrix A.

A matrix may be assigned the value of another matrix with different
current bounds, provided this operation conforms to the rules for
redimensioning just discussed. The current bounds of the target
matrix are automatically changed to be the same as the current bounds
of the matrix assigned.

6-1

When the current bounds of a matrix are changed, any elements of
that matrix with one or more subscripts equal to 0 are destroyed.

INITIALIZATION STATEMENTS

There are three MAT statements to facilitate the assignment of the
individual matrix elements.

Syntax

MAT A = CON

or

MAT A = I EN

o r

MAT A = ZER

where A is a numeric matrix.

These matrix initialization statements set the matrix specified to
the left of the = to a constant matrix having the same bounds.
The values to the right of the = are called matrix constants.

The constant CON sets each element of the matrix defined by matrix
A to 1. Conversely, the constant ZER sets each element of the matrix
defined by A to 0.

The constant IDN sets the matrix defined by matrix A to the identity
matrix. This action is defined by the following algorithm:

A (I,J) = 1 IF I = J

A (I,J) = 0 IF I<> J

For the IDN assignment to be valid, the matrix A must be two-dimen
sional and the number of columns must equal the number of rows
(i.e., A must be a square matrix).

6-2

Examples
200 MAT V = CON

sets elements of matrix V to all ones

300 MAT Z = ZER

sets elements of matrix Z to all zeroes

^ 3 4 0 D I M I = (4 , 4)
400 MAT I = IDN

sets matrix I to the identity matrix
Elements of the matrix defined by matrix I
are assigned as follows:

Row Column 1_ _2 3_ 4
1 = 1 0 0 0

2 = 0 1 0 0

3 = 0 0 1 0

4 = 0 0 0 1

MATRIX INITIALIZATION WITH REDIMENSIONING

Matrices may also be redimensioned in the MAT...CON, MAT...ZER
or MAT...IDN statments.

6-3

Syntax

MAT A = CON (Bl)

or

MAT A = CON (Bl, B2)

o r

MAT A = ZER (Bl)

or

MAT A = ZER (Bl, B2)

or

MAT A = IDN (Bl, Bl)

where A is a numeric matrix and Bl and B2 are expressions which
define a matrix bound.

These matrix initialization statements set the matrix to the left
of the = to a constant matrix having the bounds specified by Bl
and B2; and in addition, assign values to the elements of the
matrix defined by matrix A according to the functions of the
specified MAT...ZER..., MAT...CON, and MAT...IDN statement.

Examples
20 DIM X(4,5)

30 MAT X = CON (3,3)

X is 1 1

1 1 1

1 1 1

60 DIM Y(3,3]!

70 MAT Y = Z ER (4,2)

Y is

6-4

MATRIX ASSIGNMENT

A matrix may be assigned the value of another matrix.

Syntax
MAT A = B

where A and B are numeric matrices.

Both A and B must be either both one-dimensional (vectors) or both
two-dimensional (matrices).
The matrix assignment statement sets the matrix appearing to the
left of the = to the value of the matrix appearing to the right of
the =. The current bounds of the target matrix are charged to the
assigned matrix.

Examples
10 DIM A (6,6)

20 DIM B (5,4)

30 MAT A = B

the assignment at statement 30 is a legal assignment; but

15 DIM C - (10, 10)

25 DIM D - (2, 10)

35 MAT D = C

is not legal since the effect of the assignment is to try and
assign a larger storage area, (matrix C) into the smaller one
(matrix D) which would be charged with 80 more locations than were
originally allocated.

MATRIX ADDITION

Syntax
MAT A = B + C

where A, B, and C must all be either numeric vectors or numeric
matrices. The elements of A are set to the sum of the corresponding
elements of B and C. The matrices B and C must have the same current
bounds; the bounds of the target matrix A are changed to the bounds
of the input matrices (B and C).

^ ^ . E x a m p l e
100 MAT X = Y + Z

^ 2 2 0 M A T Y = X + Z
6-5

MATRIX SUBTRACTION

Syntax

MAT A = B - C

where A, B, and C must all be either numeric vectors or numeric
matrices. The matrix elements of A is set to the difference of
the corresponding elements B and C. B and C must have the same
current bounds, and the bounds of A are set to the current
bounds of B and C.

Example

142 MAT X = Y - Z

MATRIX MULTIPLICATION

Matrix elements may be multiplied by scalar quantities or by elements
of another matrix.

SCALAR MULTIPLICATION

Syntax

MAT A = (E) * B

where A and B are numeric matrices and E is a numeric scalar expres
sion.

This form of matrix multiplication sets the matrix A to the value
of the product of each element of B times the value specified by E.

Matrices A and B must have the same number of dimensions. The current,
bounds of A are changed to the current bounds of B.

Examples

300 MAT X = (5) * Y

320 MAT X = (SQR(1-X/Y)) * B

6-6

PRODUCTS OF MATRICES

Syntax

MAT X = Y * Z

X, Y, and Z are numeric two-dimensional matrices.

This form of matrix multiplication sets the matrix A to products
of the matrices to the right of the =.

When two matrices are multiplied, the number of columns in the first
matrix must equal the number of rows in the second matrix; the result
is a matrix with the same number of rows as the first matrix and the
same number of columns as the second matrix.

Examples

10 DIM A (10, 10)

20 DIM B (4, 5)

30 DIM C (5, 3)

100 MAT A = B * C

NOTE: While the statements of the form:

MAT A = A + B
MAT A = A - B

are allowed, the statement:

MAT A = A * B

causes an error when the program is run.

6-7

TRANSPOSE OPERATIONS

Syntax

MAT A = TRN (B)

where A and B are either both numeric one-dimensional matrices or
both numeric two-dimensional matrices.

The transpose statement sets the matrix A to the transpose of matrix
B; the columns (rows) of A are the rows (columns) of B. The current
bounds of A are changed. For example, if B is dimensioned M, N, the
bounds of A are changed to N, M.

Example:

100 DIM B (5, 4)

110 MAT A = TRN (B)
Matrix Inversion

Syntax
MAT A = INV (B)

where A is a two-dimensional numeric matrix and B is a square two-
dimensional numeric matrix.

The matrix A is set to the inverse of B. The bounds of A are set
to the bounds of B.

Note that the statement:

A = INV (A)

is allowed by the Prime BASIC.

The determinant of the matrix may be invoked by the function DET (A)

A is a square matrix. It may be used in any arithmetic expression.

MAT READ

The MAT READ statement causes an entire matrix to be read (input).

Syntax

MAT READ Al (DI, D2) ..., An (Dn, Dn)

where Al ..., An are a list of numeric or string matrix names
separated by commas, and DI ... Dn are dimensions of the associated
specified matrices. Specifying of dimensions DI ... Dn are optional

6-8

The MAT READ statement causes values frcm the data pool starting at
the next available values, to be assigned, in order, to the matrix
elements of the matrices specified.

Enough data values are read from the data pool to fill a matrix
according to the current bounds of the matrix. If a matrix name in
the MAT READ statement is followed by a bound list, the matrix is
redimensioned to those bounds before any data is read.

Example

10 DIM A (3,5)

100 MAT* READ A

200 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9

210 DATA 10, 11, 12, 13, 14, 15

The statement at line 100 causes fifteen numbers to be read into
matrix A by columns. For example: A(l,l) = 1; A (2,1) = 2, etc.

MAT READ FILE

The MAT READ FILE statement causes a matrix to be read frcm an external
data file and assigned, in order, to the matrix elements of the matrix
spec i fied .

Syntax

MAT READ #N, Al,..., An

where N is a file number (1-8) previously defined in a DEFINE FILE
statement, and Al, ,An is a list of matrix names.

The file N consists of an ordered list of values that defines the
contents of the elements of the matrix A. It may be created by a
previous MAT WRITE FILE statement in the same or a previously
executed program, or it may be created by the operating system
e d i t o r.

6 - 9

Example:

10 DIM V(10)

15 DEFINE FILE #1 = '(PTR)'

20 DIM M(10, 20)

25 DEFINE FILE #2 = 'ARRAY'

30 MAT READ #1, V

40 MAT READ #2, M

The contents of the file #1 are read from the paper tape reader and
assigned to the elements of the vector V. The contents of the file
named ARRAY stored on the disk are read and assigned to the elements
of matrix M.

MAT READ * FILE

Same as MAT READ FILE except the statement does not force a new
record to be read. Any data remaining in a previous record are read
as elements of the matrix.

MAT WRITE FILE

The MAT WRITE FILE statements causes a matrix to be written to an
external data file.

Syntax

MAT WRITE #N, AL, ... , An

where N is a file number (1-8) previously defined in a DEFINE FILE
statement. If the output file is in ASCII (print) format, the
character following matrix names in MAT WRITE FILE statements is
used to control the spacing of the matrix elements in the output
records. A comma specifies tabbed format and a colon specifies
packed format. The optional character following the last matrix
name controls the spacing of the elements of that last matrix and
does not inhibit the termination of the last output read. Al, ..., An
is a list of matrix names.

6-10

Example:

10 DEFINE FILE #1 = 'OUTPUT'

15 DIM A (100)

20 FOR K = 1 TO 100

25 X = 2*3.1416

30 A(K) = X*K

40 NEXT K

50 MAT WRITE #1, A

MAT INPUT

The MAT INPUT statement causes data values to be read from the
terminal and assigned, in order, to the elements of a specified
matr ix .

Syntax

MAT INPUT Al, ..., An

where Al, ..., An is a list of matrix names separated by commas. The
type of data provided must match the type of matrix being filled.

Example

10 DIM B (5)

20 MAT INPUT B

allows information to be assigned to the elements of matrix B from
the terminal. After the I is printed, typing:

5, 10, 15, 20, 25

assigns those values to B(l) through B(5).

6-11

MAT PRINT STATEMENT

This statement causes an entire matrix to be printed.

Syntax

MAT PRINT Al, ..., An

where Al, ..., An is a list of matrix names separated by commas or
colons.

The MAT PRINT statement causes all the elements of a matrix with
subscripts that are not 0 to be printed column by column.

If a matrix name is followed by a colon, elements are printed with
one space; otherwise, elements are printed in zoned format.

Example

100 DIM M(2,6)

110 MAT READ M

120 MAT PRINT M

200 DATA 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

400 END

The above program yields the following output:

1 2 3 4 5

6 7 8 9 1 0

11 12

6-12

SECTION 7

INTERFACE CONVENTIONS

BASIC differs from compiler and assembly languages because its inter
preter does not compile or assemble a reusable object text from the
source program. Therefore, the BASIC interpreter must be present
in high speed memory each time a user program is run. However, Prime
BASIC provides the CALL statement to call FORTRAN or PMA (macro-
assembly language) subroutines. Refer to Section 5 for details of the
CALL statement format.

RELATING CALL TO SUBROUTINE

The user-supplied configuration file that is associated with the BASIC
CALL statement is a table. The entries to this table are the addresses
of PMA assembly language object text subroutines, or FORTRAN
language object text subroutines, or a combination of both PMA and
object text subroutines.

An example of two typical subroutines that may be called by a program
written in BASIC is as follows:

* •■ : 'r.UBROUT I NE TO START CLUCK
*
•■*:
■V-

ENT
REL

strtck:
•\r'

STRTCK•; DAC
CRA
STA '61
OCP •" 28 STRRT CLOCK
J MP* strtck:
END

C SUBROUTINE TO GET REAL TIME CLOCK WORD
C
C

SUBROUTINE GETCLKC ORG>
COMMON .••'LIST,' LIST>::i>

ARG=LIST-::20 6:1 >
RETURN
END

C

7-1

The configuration file is produced by modifying the CALLP source
file on the MFD then assembling it. The following listing is the
original source of the CALLP subroutine; immediately following that,
is a listing that shows how the CALLP source was modified to call one
PMA subroutine to start the real-time clock and one FORTRAN subroutine
to get the real-time clock word.

* CALLP CBRSICl/TRANSLTR* 24 JAN 74

vf: :{■...}-. -Af.:{: ;+:;+-.:{::{: :*•. •.*•.•,(•:: | ■: •.+•.:+: :•(••.: (■'.:+: :(•: •. I •: •.-!■; :{•: ;-J;
: + : * • » •
* ■■*■■ CALL PROCESSOR •■♦■•
■4 : : h : i :
:+: :f: •.*::+::}: :f.:*-. :+:•.■!•: :f: •.*•. :f.:{::+: :+: :{: :|: :|".f.* -f- +• *

* CAM.. SUBROUTINE NUMBER IN BUF<IX. ADDRESS OF ARGS IN BUFC
* Bi. Jr'v 3'>, BUFaL>. 04 THE NUMBER OR ARGS>

SUBR CALLP,CALL
REL

■■{■■

*INSE,RT PCOMON

••¥

CALL DAC ■+.:<'.
LDX BUF
DRtt
NOP
JMP CALL 1

* SUciROUT INE CALL LOCAT I ONS.
CAL1 JMP Sl

.JMP S2
JMP S":
J M P S 4
I M P S 5
JMP SG
JMP S7
JMP SO
J M P S 9

* --'--DEPRULT SUBROUT INE CALLS

7-2

S l JMP CAL 2
c o IMP CAL2
c~# JMP CRL 2
S4 JMP CRL 2

.IMP CAL 2
S6 JMP CRL2
t — T JMP CRL 2
."> o JMP CRL 2
S !."-.< JMP CRL2

■ \- -UN IMP!...EMEMTED SUBROUTINE CALL
CAI .2 CALL

DAC
RERROR
«crnc-'

END

r
r

7-3

The "Modified" CALLP follows:

* C A L L P v B R S I C l , ' T R A N S LT R > 2 4 J A N 7 4

:f. •.i.*.H'.:|:-+.:f.^::+::J-.:*t:t4:V.^.:f.:|:^sl^:f..j;^:*::ts

* * C A L L P R O C E S S O R • +■
* * : i :
•,|< :f.:i:tf:;*ivri:i::{v.^.i(v.i::|:;|.::{.-.:f::f.:fr,|v,t-.i|::-t:;i-.:i-.
■{■■
* CO;...!.. SUBROUTINE NUMBER IN BUF C1 >., ADDRESS OF ARGS IN BUF
* BUF ' : : i> , BUFOLV C"N THE NUMBER OR ARGS>

S U B R C A L L P, C A L L
REL

••I:
* INSERT PCOMON
■•!•■

CALL. DAC *--h
L D X B U F
DRX
NOP
.JMP CRI....1, 1

* SUHROUTI r4E CALL LOCAT I ONS.
C R I . . 1 J M P S l

J M P S 2
J M P S 3
J M P S 4
J M P S 5
J M P S i S
J M P S 7
J M P S O
J M P S 3

* - - -DF iT lULT SUBROUTINE CALLS .

7-4

S l CAM... STRTCK
JMP* CALL

:+•-
c-Z ' LDA

SIA
SZE

BUFM

JMP CAL2
CALL GETCI...K
DAC* BUF 1-2

•A-
JMP-+- CALL.

•r-
JMP CAL 2

S4 JMP CAI...2
<"«=■ JMP CAL 2
SG JMP CAL. 2
.-.< •'" JMP CAL2
c o JMP CAL 2
S9 JMP CAL 2
:i:
••*•• -UM1MPLEMENTEC
CAL2 CAI... L- RERROR

DAC «C-'BC-'

START CLOCK
RETURN

INSURE 1 ARGUMENT

NOT 1 ARG, ERROR

1 RRG

SUBROUTINE COLL

END

r
r

7-5

MODIFYING COMMAND FILE

The source of the modified CALLP listed above is assembled. Then, the
command file must be modified. Depending on which version of BASIC
the user desires to use, one of the following command files must be
modified:

C f - B A S C * B A S I C w i t h n o P R I N T U S I N G
OR MAT statements

C « — B U S E * B A S I C w i t h P R I N T U S I N G
statement

C f — B M A T * B A S I C w i t h M A T s t a t e m e n t s

C f - B A L L * B A S I C w i t h b o t h P R I N T U S I N G
and MAT statements

Any or all of the above command files are modified using the editor,
ED, as follows:

1. Locate the command line:

LOAD B^-CALL

2. Insert LOAD commands for the subroutines to be called by
the program(s) written in BASIC. For example, to call
the subroutines listed in the sample modification of the
CALLP subroutine, the following statements are inserted:

LOAD B^STRT

LOAD B*- GTCLK

NOTE: The above 'LOAD' is a command to the PRIMOS loader;
not to be confused with the BASIC command of the same
name.

7-6

RUNNING PROGRAM WITH CALL STATEMENTS

After inserting the proper LOAD commands, execute the command file
and save the results. At this time, the desired version of BASIC,
the modified CALLP subroutine, and the called subroutines are loaded
as an entity so that programs written in BASIC may call the designated
subroutines. For example, the following program starts the real-time
clock and prints a clock value every 300 microseconds.

>LIST
10 CALL 1
20 1 - 3 0 0
30 CALL 2CJ>
40 IF K>J GOTO 30
50 PRINT I,
60 I»1+300
70 GOTO 30

Sample Output:

>RUM
300 600 900 1200 15001800
>

2100 2400 2700 3000

7-7

APPENDIX A

SAMPLE PROGRAMS

1 0 R E M * * * * * E X A M P L E 1 * * * * *
20 REM
18 REM PROGRAM TO CALCULATE MILES PER GALLON AND PRINT REPORT.
40 REM
50 REM THIS PROGRAM GIVES AN EXAMPLE OF HOW A BASIC PROGRAM CAN READ
60 REM DATA AND DO SIMPLE CALCULATIONS AND USE THE PRIMT
70 REM STATEMENT TO PRINT A REPORT.
OO REM
90 RIM IT IS INTENDED TO GIVE THE USER AN IDEA HOW EASV IT IS TO

100 REM SOLVE A PROBLEM AND WRITE A USEFUL PROGRAM WITH JUST A FEW
110 REM BASIC STATEMENTS.
120 REM
130 REM THE ONLV STATEMENTS USED ARE:
140 REM READ, LET •■;' ASSIGNMENT :•, PRINT, AND DATA
150 PRINT -'DATE-', 'ODOMETER', -'MILES', -'GALLONS-', ' MPG'
160 REM NOW INITIALIZING SOME VARIABLES USED LATER.
170 LET Ml-0
130 LET N1=0
190 LET G1=0
200 LET K1=0
210 READ l<
220 RLM K IS ODOMETER READING.
230 LET K1=K
240 RLM Kl IS SET TO ORIGINAL ODOMETER READING.
250 READ N
260 RLM N IS SET TO LATER ODOMETER READINGS
270 REM N IS ALSO USED AS A FLAG TO TERMINATE LOOP
280 REM STATEMENT 140 IS ENTRV INTO LOOP.
290 IF N=0 THEN 400
300 REM WHEN NO- O LOOP CONTINUES.
310 READ D
320 REM D IS DATE.
330 READ G
340 REM G IS GALLONS USED SINCE LAST ODOMETER READING
350 LET M=N-~K
360 REM M IS INCREMENT OF TOTAL. MILAGE
370 Ml=M:t + M
300 REM Ml IS RUNNING TOTAL OF MILES

A-1

390
400
410
420
430
440
450
460
470
400
490
500
510
520
530
540
550
560
570
500
590

LET A«M/G
RLM CALCULATION OF MILES PER GALLON
PRINT D, N, M, G, A
LET K>N
kiVM UPDATES K TO LAST ODOMETER READING
LET Gl=GliG
REM Gl IS TOTAL GALLONS USED
GOTO 250
RLM CONTINUE LOOP UNTIL N = 0.
PRINT 'TOTAL', " ', Ml, Gl, CK--K15/G1
REM NOTE USE OF , •' ', TO SKIP ONE
DATA 45882, 46193

21574, 16. S, 46315
22274, 9. 4, 46505

PRINT FIELD

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
STOP

30174, 12
30074, 17.
31574, 15.
32274, 14.
32974, 10.
O

46055
47067
47314
47464
0

The following is the output from Example 1

LOAD 'EXAMPl'
DATE ODOMETER MILES GALLONS MPG
21574 46193 311 16.8 18.5119
22274 46315 122 9 .4 12.9787
30174 46505 190 12.7 14.9606
30874 46855 350 17.6 19.8864
31574 47067 212 15.2 13.9474
322 74 47314 247 14.7 16.8027
32974 47464 150 10.6 14.1509
TOTAL 1582 97 16.3093

STOPPED AT LINE 350

A-2

10
2 0
30
40
5 0
6 0
70
80
9 0

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

RJ.-M ***** EXAMPLE 2 *****
REM
REM THE FOLLOWING STATEMENTS ARE A MODIFICATION OF EXAMPLE 1
REM TO ALLOW DATA TO BE READ FROM A FILE RATHER THAN DATA
REM STATEMENTS.
REM
DEFINEFILE# 1='GASDAT'

ODOMETER', 'MILES', GALLONS MILES/GALLON-'PRINT 'DATE
LET M1=0
LET N1=0
LET G1=0
LET K1=0
LET K=45882
REM MUST SET INITIAL VALUE OF K BV HAND,
REM OR READ IT IN FROM ANOTHER FILE TO PREVENT RECORD FROM BEING
REM DISCARDED
LET K1=K
READ* 1, N, D, G
REM ALL ITEMS MUST BE READ OR REST OF RECORD IS DISCARDED.
IE N=0 THEN 280
LET M=N~~K
M1=MHM
LET A=M/G
PRINT D, N, M, G, A
LET K=N
LET Gl=Gl-iG
GOTO 180
PR 1 NT ■' TOTAL ', •' •', Ml, Gl, < K -Kl > /Gl
STOP

The following is a sample of the output from Example 2.
Imilar to Example 1 and are included for comparison.

The results are

LOAD ,EXAMP2f

RUN
DATE ODOMETER MILES GALLONS MILES/GALLON
21574 46193 311 1 6 .8 18 .5119
22274 46315 122 9 . 4 1 2 . 9 7 8 7
30174 46505 190 1 2 .7 14 .9606
30374 46855 350 1 7 .6 19 .8864
31574 47067 212 1 5 .2 13 .9474
32274 47314 247 1 4 . 7 1 6 . 8 0 2 7
32974 47464 150 1 0 . 6 14 .1509
TOTAL 1582 97 16.3093

STOPPED AT LINE 3 50

A-3

5 RLM ***** EXAMPLE 3 *****
10 REM THIS PROGRAM CALCULATES THE FACTORS OF A POSITIVE
15 RLM INTEGER BETWEEN 1 AND 999999 INCLUSIVE.
20 REM
25 REM IF THE NUMBER HAS NO FACTORS, A MESSAGE IS RETURNED
30 REM THAT THE NUMBER IS PRIME. CHECKING IS MADE FOR SOME
35 REM SPECIAL CASES.
40 REM
45 REM THE PROGRAM SHOWS THE US OF GOSUB AND RETURN STATEMENTS
50 REM TO PRODUCE BOTH NESTED AND SEQUENTIAL. SUBROUTINES
55 REM IN A PROGRAM. IT ALSO DEMONSTRATES THE USE OF THE PRINT
60 REM AND THE INPUT STATEMENTS TO PRODUCE AN INTERACTIVE CON
65 REM VERSATIONAL PROGRAM.
70 REM
75 PRINT 'PLEASE TVPE VOUR NUMBER:-':
80 INPUT A
85 LET P=l
90 LET S=l
95 LET H=l

100 REM H INITIALIZING FLAGS.
105 GOSUB 375
110 GOSUB 350
115 PRINT 'IS THIS 70UR LAST NUMBER:':
120 INPUT A*
125 IF A^O'VES' THEN 75
130 END
135 REM ********END OF MAIN PROGRAM.
140 REM SUBROUTINE TO CHECK IE A IS NOT AN INTEGER.
145 ie a=int<:a:> THEN 160
150 PRINT -'NUMBER MUST BE AN INTEGER. '
155 GOSUB 500
160 RETURN
165 REM SUBROUTINE RETURNS MESSAGE IF fl) 999999
170 IF A0999999 THEN 185
175 PRINT 'SORRV, AT PRESENT, NUMBER MAV NOT EXCEED 999999. ■'
188 GOSUB 50O
105 RETURN
190 REM SUBROUTINE TO HANDLE A = 1

A-4

195 IF AOl THEN 215
200 PRINT A: 'IS 1 AND IS DIVISIBLE BV ONLV ITSELF AND 1. •'
205 PRINT 'HOWEVER, IT IS NOT A PRIME NUMBER '
210 GOSUB 588
215 RETURN
228 REM SUBROUTINE TO CHECK IF A IS 0 OR NEGATIVE.
225 IF A>-1 THEN 245
230 PRINT ••NUMBER MAV NOT BE EITHER ZERO OR A NEGATIVE VALUE.
235 PRINT 'VOUR NUMBER':A:'IS INVALID. ■'
240 GOSUB 500
245 RETURN
250 REM SUBROUTINE TO HANDLE A = 2,3.
255 IE A>3 THEN IE AC2 GOTO 270
260 GOSUB 350
265 GOSUB 500
270 RETURN
275 Rl-'M SUBROUTINE TO PRINT HEADER LINE.
280 IF P=l THEN 310
285 IF H=0 THEN 310
290 PRINT 'NUMBER ' :A: ' IS DIVISIBLE BV: '
295 PRINT
300 PRINT A, -AND', ■'!•', ' ', ' •', •' '
305 LET H=0
310 RETURN
315 REM SUBROUTINE THAT PRINTS DIVISORS AND QUOTIENTS.
328 IF P=l THEN 345
325 PRINT X, 'AND', Q2, ' ', '
330 IF X02 THEN 345
335 PRINT •'! '. 'AND', A
340 PRINT
345 RETURN
350 REM SUBROUTINE TO PRINT MESSAGE. WHEN NUMBER IS A PRIME
355 IF P=0 THEN 378
360 PR HJT 'NUMBER' : A: 'IS A PRIME NUMBER. '
365 PRINT
378 RETURN
375 REM PERFORM CALCULATION AND GET ROUTINES TO PRINT RESULT?
388 IF S=8 THEN 420

A-5

385 FOR X=INTvA/2> TO 2 STEP 1
390 LET Q1=A/X
395 LET Q2=INT-rA/X>
400 LET R=Q1Q2
405 GOSUB 425
410 NEXT X
415 gosub eee
420 RETURN
425 REM CALL PRINT ROUTINES ETC.
430 IF R-O0 THEN 450
435 LET P=0
440 GOSUB 275
445 GOSUB 315
458 RETURN
455 REM SUBROUTINE TO ENTER SPECIAL ROUTINES.
460 REM IF A IS NEGATIVE OR ZERO, OR 1,2,3, OR IF A IS A FRACTION
465 GOSUB 140
470 GOSUB 165
475 IF A>3 THEN 495
488 GOSUB 198
485 GOSUB 228
498 GOSUB 250
495 RETURN
500 PRINT
505 LET S=0
518 RETURN

Ihe following is same sample output from Example 3.

LOAD 'EXAMP3*
RUN

PLEASE TYPE YOUR NUMBER: 0
NUMBER MAY NOT BE EITHEH ZERO OR A NEGATIVE VALUE.

YOUR NUMBER 0 IS INVALID.
IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 1
1 IS 1 AND IS DIVISIBLE BY ONLY ITSELF AND 1.
HOWEVER, IT IS NOT A PRIME NUMBER.

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 2
NUMBER 2 IS A PRIME NUMBER.

A-6

Sample output from Example 3 (cont)

r

r

IS THIS YOUR LAST NUM3ER: NO
PLEASE TYPE YOUR NUMBER: 4
NUMBER 4 IS DIVISI3LE BY:

AND
AND
AND

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 17
NUMBER 17 IS A PRIME NUMBER.

IS THIS YOUR LAST NUMBER: NO
PLEASE TYPE YOUR NUMBER: 324567390123456789
SORRY, AT PRESENT, NUMBER MAY tiOT EXCEED 999999

PLEASE TYPE YOUR NUMBER: 56
NUMBER 56 IS DIVISIBLE BY:

56 AND
28 AND
14 AND
3 AND
7 AND
4 AND 14
2 AND 28
1 AND 56

IS THIS YOUR LAST NUMBER: YES

END AT LINE 230

r
r

A-7

100 REM ***** EXAMPLE 4 *****
110 REM
120 REM THIS PROGRAM USES THE ARRAV PROCESSING CAPABILITIES
130 REM OF BASIC TO COMPUTE THE TOTAL DOLLAR VALUE OF THREE
140 REM PRODUCTS SOLD BV FIVE SALESMEN.
150 REM
160 REM VECTOR ELEMENT PCM> IS THE PRICE OF THE N--TH PRODUCT.
170 REM MATRIX ELEMENT S<M, N> IS THE TOTAL NUMBER OF THE M-TH
180 REM PRODUCT SOLD BV THE N-TH SALESMAN.
190 REM
200 REM
210 DIM S<6, 4>
220 DIM P<4>
225 T=0
230 MAT P= CON
240 MAT S= ZER
250 READ P < 1 >, P <. 2 >, P C 3 >
260 READ SCI, 1>, SOI, 2>, S<1, 3>> SC2, 1>, SC2, 2>, SC2, 3>
270 READ S < 3. 1 >, S < 3, 2 >, S < 3, 3 ">, S C 4, 1 >, S C 4, 2 >, S < 4, 3 >
280 READ S < 5, 1 >, S C 5, 2 >, S < 5, 3 >
290 FOR 1=1 TO 5
300 FOR J=l TO 3
3 1 0 S (L J) = P (J) * S (L J)
311 T=»S<I,J>+T
320 PRINT I:J, S<I,J>
330 NEXT J
340 NEXT I
341 PRINT
342 PRINT
350 MATPRINT S
351 PRINT
352 PRINT 'TOTAL SALES =':T
360 DATA 1. 29, 2. 54, 5. 48
370 DATA 47, 24, 1G, 56, 38, 12, 76, 23, 14, 76* 45, 12, 45, 34, 23
380 STOP

A-8

The following is sample output from Example 4.

i i 6 0 . 6 6
1 '2 6 0 . 9 6
1 3 J-J7.63
.2 1 7 2 . 2 4
2 2 9 6 . 5 2
2 3 6 5 . 7 6

^ o 1 9 3 . 0 4r 3 2 5 3 . 4 2
3 3 7 6 . 7 2
4 1 9 3 . 0 4
4 Z 1 14.3
4 3 6 5 . 7 6
5 1 5 3 . 0 5
5 2 3 6 . 3 6
5 3 126.04
60.63 7 2 . 2 4 9 3.04 9^3.04 5--S.05r 0
36.36

6 0 . 9 6
0

9 6 . 5 2
:J7.6^

5 3.42
6 5 . 7 6

11 4 . 3
76 .72

65 .76 126 .04
0 0

TOTAL SALES - 1225.5k±

STOPPED AT LINE 380

A-9

100
110
120
130
140
158
160
170
188
198
208
210
220
230
240
258
260
270
288
298
300
316
320
338
340
358
368
378
388
398
480
410
420
438
440
458
468
470
480
430
508
518

'SINOO
:LOG C X > .•'L.OG''10:

ON V - AXIS'

REM ***** EXAMPLE 5 *****
REM
REM MULTIPLE PLOT PROGRAM
REM
REM
DEE FNFO-0 =
DEF FNGOO =
READ A, B. S
READ C, D. N
LET H=<D CVN
IF N058 THEN 238
PRINT •' OWLS' 50 SUBDIVISIONS ALLOWED
STOP
DEF FNROO^INTOM 5>
PR 3 NT 'V-AXIS: FROM ':C:'TO ' :D: ' IN STEPS OF
PRINT
L *=•',-'•'
FOR 1=1
L*=L$+•'■•-•'
NEXT I
PRINT L$4
FOR
LET
LET
LET

TO N 1

;tep

LET
L$=-
EOR

X=A TO B
V=FNFOO
V l ^ F N R ^ V - C V l O
V=FNGOO
> i-^i> c. —FNR<<V-C>/H>

1=8 TO N
THENIF I=V1

IF I=V2
L*=L$+-' •'
GOTO 458
L*=L*-» -'*'
GOTO 458
L$=L*+-' '
NEXT I
PRINT L$+'
NEXT X
DATA 1, 10, 3
DATA -1, 1, 58
DATA 0
STOP

420
THEN 440

A-10

The following is sanple output from Example 5.

V-AXIS : FROM -1 TO 1 IN STEPS OF 4E-@;

r
*

r

9 1. o-
* 1.

4 * 1.
4 * •", • ^ i

4 - * 2.
* +

- J . .

+ ->.
+ - i . i '

4 4
4 4. ~-

4 4.
4 4.

-11- 5. 1 3 3 3 3
+ 5. 4 3 9 9 9
4- 5. 7 9 3 3 3

-1 6. 0 3 3 3 3
• 4 6. 3 3 3 3 9

* 4- 6. ,23933
* 4 6. 3.3999

* + i ' . 2 3 3 3 3
4- * i ' . c-(dCiQC|
+ * -? 8 3 3 3 3

4 * 1 3 3 3 3
* + 4 3 99'3

* 4- o . 7 9 9 3 8
* + 9 8 3 3 3 8

4 S'. 3 3 3 3 8
4 9. 6 9 9 9 8
4- 9. 9 9 9 9 8

A - l l

100 REM *****
110 RLM FI BONA'
120 REM
130 INPUT
140 1=1
150 J=2
160 PR I NT I, J,
170 FOR K=--1. TO
188 F=I4.J
190 I = J
208 J=F
210 PRINT F,
220 NEXT f=
230 END

EXAMPLE 6 *****
::l NUMBER GENERATOR.

E

Sample output:

IZO
1
13 Z i 04 55 39
144 Z66 377 610 937
1597 £534 4131 676^ 1 JKJ4S
17711 £3657

END AT LINE £30

A-12

100 REM ***** EXAMPLE 7 *****
110 REM
120 RLM LUNAR LANDING PROGRAM
130 REM
140 PRINT
150 PRINT 'CONTROL CALL LUNAR MODULE. MANUAL CONTROL IS NECESSARV. •'
160 PRINT 'VOU MRV RESET FUEL RATE K EACH 10 SECS TO 0 OR ANV VALUE'
170 PRINT 'BETWEEN 8 & 200 LBS/SEC. VOUVE 16000 LBS. FUEL. ESTIMMATED'
180 PRINT 'FREE-FALL IMPACT TIME = 120 SECS. CAPSULE WEIGHT = 32500 LB'
1 9 0 B * = ' •■» * # # # # # # # # # # # # . # # # # # # # # . # # #■ '
200 PRINT 'FIRST RADAR CHECK COMING UP. ■'
210 PRINT
220 PRINT
230 PRINT
240 PRINT 'COMMENCE LANDING PROCEDURE'
250 PRINT
260 PRINT 'TIME ALTITUDE', 'VELOCITV, 'FUEL CLBSV , 'FUEL RATE'
270 PRINT 'SECS MILES FEET', •' MPH-'
280 PRINT
230 L=0
300 A=120
310 V=l
320 M=32500
338 N=1650O
340 G=lE-03
358 Z=l. 8
360 PR INTUSI NG B*•, L, I NT < A > : I NT < 5288* C A-1 NT < A > > >, 3680*V, M--N,
370 PRINT •'!<=- :
380 INPUT K
330 T-1©
408 ON SGNOO+2 GOTO 430,468,410
410 IF K<8 G0T8 430
420 IF KO200 GOTO 460
430 PRINT 'NOT POSSIBLE'
440 PRINT TAB <56 >:
450 G0T8 378
460 IF M-NC1E-03 GOTO 570
470 IF TC1E-03 GOTO 360
480 S=T
490 IE <N4-S*KX=M GOTO 510
580 S= CM--N>,-*K
510 GOSUB 1828
528 IF I<=8 G8T8 388
538 IF VC=8 GOTO 558
540 IF J CO GOTO 350
550 GOSUB Q40
560 GOTO 460
570 PRINT 'FUEL OUT AT': L : 'SECS-'
588 S= < - V+SQR C V*V4-2*R*G > ;«/G
538 V=V4-G*S

A-13

688
618
628
638
648
658
668
s?e
688
638
788
718
728
738
748
758
768
778
788
796
888
818
828
838
848
858
868
878
8'38
898
988
918
928
338
346
956
960
978
988
938

1088
1818
1020
1836
1848
1058
1868
1878
1888
1098
1100
111 0
1120
1130

L=L4-S
PRINT 'ON THE MOON AT':L: 'SECS'
W=3688*V
PR I NT ' IMPRCT VEL.8C I TV OF •' : W : •' MPH '
PRINT 'FUEL LEFT IS': M-N : 'LBS-'
IF W>1 GOTO 688
PR I NT •' PERFECT LAND I NG ! '
GOTO 788
IF W>16 GOTO 718
PRINT -'GOOD LANDING-'
GOTO 788
IF W>25 G8T6 748
PRINT 'POOR LANDING"
GOTO 788
IF W>68 G8T8 778
PRINT 'CRAFT DAMAGED; G86D LUCK T8 VOU AND THE RED
CiGTB 788
FT,: I NT 'FATAL CRASH; NO SURVIVORS'
PR I NT
PRINT 'TRV AGAIN?':
INPUT A*
IF A£=-'VES-' GOTO 288
IF A*='N6" THEN ST8P
G8T6 798
L=L4S
T=T-S
M=M-S*K
A=I
V=J
RETURN
IF SC5E--63 GOTO 618
S=2*A.••'<. V4-SQRc: V*V+2*A*<G Z*K/M!:< > >
GOSUB 1828
GOSUB 848
GOTO 988
W= < 1 - M*G/ t Z*K > > ,-'2
S=M*V/i:Z*K*c:W4-SQR<:W*W+V,,Z> > >45E-82
GOSUB 1828
O.M SGNCI>42 GOTO 388,986,996
GOSUB 848
0.\» SGNCJ>+2 GGTG 1818,466,466
ON SGNCV5+2 GOTO 468,466,958
Q=S*KVM
Ql=8
FOR Q2=9 T6 1 STEP - 1
Q1«Q*<1/Q2+Q1>
NEXT Q2
J=V4G*S-Z*Q1
Ql=8
FOR Q2=9 T6 1 STEP - 1
Q1=Q* <: Q14 I/ < Q2* < Q2 +1 > > >
NEXT Q2
I--A G*S*S/2- V*S4Z*S*Q1
RETURN

i,OX.

A-14

Sample output from Example 7.

r

r

COMMENCE LANDING PROCEDURE

TIME ALTITUDE VELOCITY FUEL (LBS) FUEL RATE
SECS MILES FEET MPH

0 120 6600.000 16000 .000 K = ! 0
10 109 5015 3636 .000 16000.000 K = 10
20 99 4223 3672.000 16000.000 K= 10
60 89 2903 3708 .000 16000.000 K = 10
40 79 1055 3744 .000 16000.000 K = 10
50 63 3959 6160 .000 16000.000 K = 10
60 53 1055 6316 .000 16000.000 K = 10
70 47 d^06 3352 .000 16000.000 Kr 1200
30 37 1929 3476 .430 14000.000 K = 1200
90 2 3 1334 3072 .940 12000 .000 K=- 1200

100 2 0 1706 2637.460 10000.000 K = !2 0 0
110 13 3399 2164 .970 6000 .000 K = !2Q0
120 1772 1649.140 6000 .000 K- !2 0 0
130 2795 1031.920 4000 .000 K = I20C
140 2013 45£.719 2 0 0 0 . 0 0 0 K= 140
150 1429 347.074 1600.000 K = 160
160 2943 164.626 1000.000 K= 140
170 1364 50.793 600 .000 K = ! 8
130 577 56 .406 5 2 0 . 0 0 0 K = ! 2 0
190 47 15.310 3 2 0 . 0 0 0 K = 11 9 . 4

ON THE MOON AT 193.354 SECS
IMPACT VELOCITY OF .313765 MPH
FUEL LEFT IS 245.219 LBS
PERFECi' LANDING!

A-15

10 REM ***** EXAMPLE 8 *****
20 REM
30 REM THIS PROGRAM SEARCHES A DATA FILE
40 REM STRING ITEMS AND RETURNS THE LINE
5 0 REM NUMBER THAT DEFINES THE LOCATION I
6 0 REM
70 PRINT -'ENTER FILENAME',
8 0 INPUT FS
96 DEFINEFIL.E* 1=F$

100 PRINT 'ENTER STRING',
11 0 INPLTT S$
111 C = l
120 IE S*=-NO MORE' THEN 260
130 READ* 1, B*-
148 FOR 1=1 TO LENSES>
150 IF B$='EOT' THEN 200
160 IF Bi=S* THEN 230
170 IE S$=SUB<BJ:> I, LENCSf >> THEN 230
171 C=C+1
180 NEXT I
130 IF BIOS* THEN 130
200 PRINT S$:'NOT FOUND. ■'
218 REWIND* 1
220 GOTO 100
230 PRINT S*:'FOUND AT CHARACTER POSITION
240 REWIND* 1
250 GOTO 100
260 END

CONSISTING OF
<RECORD SEQUENCE >

OF THE STRINGCS'X

Output from Example 8.

>RUN
E H ' U d F I L E N A M E I S O U R C E
ENTER STRING I GORGE
GORGE FOUND AT CHARACTER POSITION 63
ENTER STRING IAARDVAARK
AARDVAARK FOUND AT CHARACTER POSITION
ENTER STRING ISYZYGY
SYZYGY FOUND AT CHARACTER POSITION 73
ENTER STRING 1XXXX
XXXX NOT FOUND.
ENTER STRING I ADZE
ADZE FOUND AT CHARACTER POSITION 10 .
ENTER STRING !NO MORE
END AT LINE 260

A-16

10 REM ***** EXAMPLE 9 *****
12 REM
14 REM THIS PROGRAM SIMULATES AN N DIMENSIONAL ARRAV
1 6 REM
20 DIM V<1000>
30 INPUT DI,D2, D3

110 FOR 1=1 TO DI
111 FOR J=l TO D2
112 FOR K=l TO D3
115 X= <I-1j*D2+ C J-l> *D34K
120 V < X > = 14- 2*J+K~2
130 PRINT VOO,

r 146 NEXT K
150 PRINT
160 NEXT J
170 PRINT
188 NEXT I
2 0 0 STOP

r

r
r

Output from Example 9

>RUN
\2, 3, 4
4
6
8 1 1

5 8
7 10
9 12

1 2 1 9
1 4 2 1
1 6 2 3

1 3 2 0
1 5 2 2
1 7 2 4

A-17

PTU59 REV. 16 INTERPRETIVE BASIC

PTU 59

REV. 16 INTERPRETIVE BASIC

This document corrects and adds to The Interpretive BASIC Programmer's
Guide, Rev. B (IDR1813).

STATEMENTS

The following replaces the description of ENTER on page 5-9.

ENTER

ENTER #

Both forms of this statement (ENTER and ENTER #) allow a numeric or
string variable to be entered from the terminal. In addition, a time
limit may be specified for entry, the actual time used returned, and,
for ENTER # , the user number assigned at LOGIN time is returned.

Syntax

ENTER time-limit, time-lim-val, variable

ENTER # user-num-var [, time-limit, t>me-lim-val, variable]

t i m e - l i m i t

Time- l im-val

var iab le

user-num-var

The time, in second^(1-1800) , allowed for terminal
i npu t .

The variable/in which the actual time used for
input, in /seconds, is returned. If time-limit is
exceededj/its negative, -time-limit is returned.

The variable, either numeric or string, for which a
valup is expected from the terminal. If no value
is /input during the allotted time, variable is set
tcf 0 (numeric) or null (string) .

The variable which receives the user's login number
(ENTER # only) . To display this value, type the
command PRINT user-num-var.

Comments

ENTER and ENTER # do not display prompt characters. If inputs for
these statements are to be prompted, use a PRINT 'prompt-string'
statement l^-ior to ENTER or ENTER # .

59 February 1979

PTU59

FUNCTIONS

The following are corrections to page 3-5a:

1. CuT$$ should be CVT$$.

2. In LIN(I), if 1=0 then nothing happens.

ERROR MESSAGES

The table below replaces Appendix B, Error Messages,

ERROR MESSAGES

Error Run-time or Description
Code Interpretive

Improper operand
Memory overflow when dimensioning an array
Array expected

Subroutine call number not used
Matrix dimension error
PRINT/WRITE error
Bad input
Bad line number
Bad BIN DA position
Bad TAB in WRITE/PRINT statement
Bad unit number in WRITE statement

Illegal argument in VAL function
Bad operator
Constant followed by left parenthesis expected
Arguments too complicated for CALL
Pound sign (#) expected
Carriage return (CR) expected
Simple variable followed by equals sign (=) expected

DEFINE FILE error
DEFINE FILE error with mode specification
Division by zero (0)

E R WRITE # error ; Dr iver message is pr inted (error is
not recoverable; BASIC marks the undefined unit)

E E I E x p r e s s i o n e x p e c t e d
E S I S t r i n g e x p r e s s i o n e x p e c t e d
E X I E x p o n e n t o v e r fl o w

F R Un i t re fe renced by I /O s ta temen t no t defined

R E V . 0 5 9 . - 2

AD
AO
AR

BC
BD If R
BE
BI
BL
BP
BT
BU

CE
CH
CN
CO
CP
CR
CV

DF
DM
DZ

PTU59 REV. 16 INTERPRETIVE BASIC

Format error
FOR/NEXT nesting error
Improper function name
Memory overflow when fetching packet
Improper function format
TO or STEP expected
FOR separator error

GOSUB nesting too deep
GOTO expected

Illegal constant in DIM statement
Unrecognized statement
Illegal MAT multiply
THEN or GOTO expected
Improper sign of increment in FOR statement
Integer overflow
Statement illegal after source input
Il legal terminator

Argument not greater than zero (0)
LOAD in progress
READ/INPUT list error
Line not recognized

FN function definition expected
Mixed mode
Simple variable followed by right parenthesis
expected
String variable in real expression
Illegal MARGIN statement (MARGIN value out of range)

Storage space for program exceeded
READ/INPUT # exceeds 10**(+38)
Constant exceeds 10**(+38)
Index out of range in ON GOTO or ON GOSUB

P R WRITE # unit defined by DEFINE READ FILE
statement

P N I N o t e n o u g h r i g h t p a r e n t h e s e s
P O I P a r e n t h e s i s n e s t i n g t o o d e e p
PR I Not enough arguments in SUB ca l l

R R READ a f te r WRITE to non-DA un i t
R E I R e a l e x p r e s s i o n n o t a l l o w e d
R I R I n t e g e r > 3 2 7 6 7

FE
FM
FN
FO
FP
FR
FT

GO
GT

IC
ID
IE
IF
I I
10
IS
IT

LG
LP
LT
LU

ML
MM
MR

MS
MV

0
0
0
OV

5 9 - 3 F e b r u a r y 1 9 7 9

PTU59

Overflow occurred
Subroutine CALL number out of range
String constant not proper here
Overflow occurred
Arithmetic overflow
Expression too complicated to evaluate
String item not allowed
Overflow occurred
Line number in BREAKON statement doesn't exist
Storage space exceeded
Argument is negative in call to SQR
Subscript out of range
No terminating quotes

Compressed source overflow
RETURN without GOSUB

Undefined FN function
Undefined string variable
Undefined variable

VL R Second argument to VAL function invalid

WRITE error
File is read-only (WRITE PROTECT error)
READ after WRITE in non-DA file

SIN, COS, EX argument > 32767
Illegal character in exponent
Exponent overflow

r D i v i s i o n b y z e r o (0)

SA
SB
SC
SD
SE
SF
SI
SM
SN
SO
SQ
SS
ST

TO
TR

UF
US
UV

WE
WP
WR

X
XM
XO

R E V . 0 5 9

INDEX

ABS FUNCTION 3-5
ALLOCATE 1-3
ARGUMENT LIST 3-4,5-3
ARRAV ASSIGNMENT 6-4,6-5
ARRAV ADDITION 6-5
ARRAV BOUNDS 2-4
ARRAV DECLARATIONS 2-4
ARRAV DIMENSIONS 2-3 TO 2-5
ARRAV ELEMENT REFERENCES 2-5
ARRAV ELEMENTS 2-5, 2-6, 3-1, 5-20, 6-1, 6-11
ARRAV INITIALIZATION 6-2 TO 6-4
ARRAV MULTIPLICATION 6-6,6-7
ARRAV NAME 2-3. 2-5, 2-6, 5 0, 6-10
ARRAV REDIMENSIONING 2-5,6-3,6-4
ARRAV REFERENCE 5-IS
ARRAV SUBTRACTION G-G
RRRAV SUBSCRIPTS 2-3,2-5,5-20,6-2
ARRAV STORAGE 2-3 TO 2-5
ARRAV VARIABLES 2-3
ARRRVS 1-7, 1-3, 1-10, 2-3 TO 2-6
ASCI I 3-4, 4-2, 5-36
ASCII FILES 1-5, 2-2
ASR 5-6
ASSIGNMENT 1-12,5-20,5-34
ASTERISKS 1—12,5-26
ATN FUNCTION 3-5

BASIC COMMANDS 1-8
BATCH MODE 1-2, 1-5
BINARV OPERATORS 3-1
BLANKS 1-3, 5-13, 5-23
BODV OF STATEMENT 1-3, 1-4
BOUNDS 2-3, 2-5, 5-8, 6~1, 6-8
BREAK 1-7, 1—10, 5-2

BREAKPOINT 5-2

X-l

INDEX

CALCULATOR 1-7
CALL 5-3,7-1 TO 7-1
CALLP 7-1 TO 7-4
CARD READER 5-6
CARDS 1-5
CARRIAGE RETURN 1-1 TO 1-4,2-2,4-2,5-26,5-35
CHARACTER OVERFLOW 5-25
CLEAR COMMAND 1-10
CLOSE FILE 4-2,5-3,5-33
COLON SEPARATOR 5-23, 5-25, 6-11
COLUMN 6-1, 6-11, 6-12
COLUMN MAJOR 2-3
COMMA 4-2, 5-23, 5-25, 5-23
COMMAND FILE 7-4, 7-5
COMMAND PROCESSOR 1-1
CON 6-2 TO 6-4
CONCATENATION 3-2
CONFIGURATION FILE 5-3, 7-2
CONSTANTS 3-1, 5-4
CONTENT OF FILE 4-1
CONTEXT 2-6
CONTINUE COMMAND 1-10, 1-12
CONTROL VARIABLE 5-10
CONTROL-P 1-11
CONVERSION 3-1,5-23
CONVERSATIONAL MODE 1-2,4-1
COS FUNCTION 3-5
CRD 5-6
CURRENT BOUNDS 2-5

DATA 1- 1U, 1-3, 2-1 TO 2-7, 4-1, 5-18
DATA FILES 4-1,6-10
DATA ITEM 4-2
DATA LIST 5-34
DATA POOL 5-34,5-36,6-3
DATA STATEMENT 5-4
DATA TVPE 3—1, 3-4, 5—18, 5-20
DATA VALUES 5-31

X-2

INDEX

r

DEALLOCATE 1-3
DEBUGGING 1-7,5-2,5-40
DECIMAL POINT 1-7,2-1,5-28
DEF 3-7, 5-5
DEFAULT BOUNDS 6-1
DEFAULT 1-8,1-3
DEFINE FILE 4-2,5-6,6-10
DELETE A STATEMENT 1-4,1-3
DELETING A STATEMENT 1-4
DEVICE NAMES 5-6
DEVICE SPECIFICATION 1-6
DIGIT 2-2
DIM 2-4,2-5,5-8
DISK 1-5, 4-2,5-6
DOLLAR SIGN 2-3, 2-6, 5-31
DOS 1-1, 7-5
DOS-VM 1-1

ED fJR FILED 2-1,3-2
EDITED STATEMENTS 1-3
END 5-3
ENTERING BASIC 1-1,
ENTERING STATEMENTS 1-2
ERROR DETECTION 1-12
ERROR IDENTIFIER 1-12
ERROR MESSAGES 1-12, 4-2, B-l
ESCAPE SEQUENCES 3-2
EXECUTING A PROGRAM 1-5,1-6
EXP FUNCTION 3-5
EXPLICITLV DEFINED 5-8
EXPRESSIONS 3 1 TO 3-4,4-2
EXPRESSION EVALUATION 3-2,3-4

FILE COMMAND 1-5,1-6,1-8, 4-1
FILE EXPRESSIONS 4-3
FILE NUMBERS 4-2
FILE SVSTEM USE 4-3
FILENAME 1-5, 1-8, 4-1, 4-2, 5-6

X-3

INDEX

FILES 4-1 TO 4-3
FIRST LIHE 1-8,1-3
FLORTING POINT 2-1,3-1
FOR 5-10,5-21
FRACTION 2-5
FREE-FORMAT 1-3
FUNCTIONS 1-7,5-5,3-4 TO 3-7
FUNCTION REFERENCE 2-1,3-4,3-7
FUNCTION NAMES 3-4

GO 1-1
GOSUB 5-14, 5-37
GOTO 11, 5-15

HALT A PROGRAM 1-7

I/O UNIT 5-38
IDENTITV MATRIX 6-2
IDN 6-2 TO 6-4
IF 5-16
ILLEGAL EXPRESSIONS 5-13
IMMEDIATE MODE 1-2,1-7,5-2
IMPLICIT DEFINITION 2-2,2-5
INITIALIZING STORAGE 1-8
INITIALIZING NUMERIC VARIABLES 2-i
INITIALIZING STRING VARIABLES 2-3
INPUT A STATEMENT 1-4
INPUT DATA 1-5
INPUT LIST 5-18
INPUT STATEMENT 5-18
INPUT/OUTPUT 4-1
INSERTING A STATEMENT 1-2,1-4
INT FUNCTION-3-5
INTEGER 2-5
INTERFACE CONVENTIONS 5-3,7-1
INTERPRETER 1-1, 1-5, 7-1

LANGUAGE PROCESSOR 1-8

X-4

INDEX

r

LAST LINE 1-8, 1-3
LEFT ANGLE BRACKET 5-31
LEN FUNCTION 3-5
LENGTH OF STRING 2-3,3-4
LET 1-2, 1-4, 1-7, 5-20
LETTER 2-2
LINE 1-1, 4-2
LINE PRINTER 5-6
LIST COMMAND 1-3
LITERALS 5-34
LOAD COMMAND 1-5, 1-6, 1-8, 4-1
LOAD SWITCH 1—11
LOADING PROGRAMS 1-6
LOG FUNCTION 3-5
LOOP 5-10, 5-21
LOWER BOUND 5-8
LPR 5-6

MAGNETIC TAPE 1-5,5-6
MAIN PROGRAM 5-3
MANTISSA 2-1
MAT 2-4, 2-5, 5-1, 6-1 TO 6-12
MAT INPUT 6-11
MAT PRINT 6-11
MAT READ- 6-3
MAT STATEMENT 6-1 TO 6-12, 7-4
MAT WRITE 6-10
MATRIX 2-3 TO 2-5,6-1 TO 6-12
MEMORV CONFIGURATIONS 5-1
MERGE 1-8
MODES OF OPERATION
MT1 5-6

NAMES OF VARIABLES 2-3 TO 2-6
NESTED 5-10
NEW COMMAND 1-10
NEXT 5—10, 5-21
NULL PRINT LIST 5-26

X-5

INDEX

NULL STRING 2-2,2-3,2-6,5-20
NUMERIC EXPRESSIONS 2-5,3-1,3-2
NUMERIC SCALAR VARIABLES 2-2
NUMERIC ARRAVS 2-6,6-5 TO 6-8
NUMERIC VALUES 2-1
NUMERIC VARIABLE 5-20

OBJECT TEXT 7-1
OFF-LINE STORAGE 1-5
ON STATEMENT 5-22
ONE DIMENSION 2-3 TO 2-4
OPEN FILE 4-2,5-33
OPERANDS 3-1
GPERFrTING MODES 1-1
OPERATORS 3-1 TO 3-4
ORDER OF EXECUTION 1-1,1-3
OUTPUT DATA 1-5

PAPER TAPE READER 1-6,5-6
PAPER TAPE PUNCH 1-6, 5-6
PAPER TAPE 1-5, 1-6
PARANTHESES 3-2
PAUSE 1-12
PLUS OR MINUS IN PRINT FIELD 5-23
POUND SIGN 5-28,5-31
PRECEDENCE 3-2
PR INI 1-1 TO 1-3,1-7,5-23
PRINT FORMAT FIELDS 5-27 TO 5-33
PRINT LIST TERMINATION 5-26
PRINT NUMERIC FORMAT FIELDS 5-27 TO 5-31
PRINT STRING FORMAT FIELDS 5-31 TO 5-33
PRINT USING 5-1, 5-27, 7-4
PRINTING ZONES 5-25
PRINTING SPECIAL CHARACTERS 5-33
PRINTING NUMERIC EXPRESSIONS 5-23
PRINTING INTEGERS 5-23
PRINTING FRACTIONS 5-23
PRINTING SCIENTIFIC FORMAT 5-24

X-6

INDEX

PRINTING STRING EXPRESSIONS 5-24
PRODUCTS OF ARRAVS 6-7
PROGRAM FILES 4-1
PROGRAM STORAGE AREA 1-3 TO 1-7
PROGRAM STRUCTURE 1-1
PROMPT CHARACTER 5-1, 5-18
PTP 1-5, 5-6
PTR 5-6

RANGE 2-5, 4-2
READ 4-2,5-34
READ FILE 5-35
READING FILES 1-5
RECORD 4-2, 5-35
RELATIONAL EXPRESSIONS 3-3,3-4
RELATIONAL OPERATORS 3-3,5—16
RELATIONSHIP OF NAMES 2-6
REM 1-2, 5-36
REMARK 1-2
REPLACING A STATEMENT 1-4
RESPONSE CHARF4CTER 5-1
RESTARTING PROGRAM EXECUTION 1-10 TO 1-12
RESTORE 5-36
RETURN 5-14, 5-37
REWIND 4-2, 5-33
RIGHT ANGLE BRACKET 5-31
RND FUNCTION 3-5
ROTARV CONTROL SWITCH 1-11
ROUNDING 3-1,5-28
ROW 6—1
RTOS 1-1
RUN COMMAND 1-4, 1-6, 1-8, 1-3, 4-1
RUNNING PROGRAMS 1-6

SCALAR PRODUCT OF ARRAV G-G
SCALAR VARIABLES 2-2,2-3,3-1
SENSE SWITCHES 1-11
SEQUENTIAL RECORDS 4-1

X-7

INDEX

SGN FUNCTION 3-5
SIGN 2-1,5-23
SIGNIFICANT DIGIT 2-1
SIN FUNCTION 1-7,3-5
SINGLE QOUTES 1-5,5-18
SINGLE-PRECISION 2-1
SOURCE PROGRAM 7—1
SOURCE STATEMENT 1-12
SOURCE FILES 1-5,1-8
SPACES 1-3,5-18
SPECIAL CHARACTERS 1-3
SQR FUNCTION 3-5
START 1-11
STARTING ADDRESS OF BASIC 1-11
STATEMENT EDITOR 1-1
STATEMENT SEQUENCE 1-2
STATEMENTS 1-1, 5-1 TO 5-42
STATEMENT FORMAT 1-1
STATEMENT NUMBER 1-1, 1-2, 1-4, 1-7, 5-33
STEP 5-10
STOP 1-10, 5-33
STORAGE OF STATEMENTS 1-3
STORAGE ALLOCATION 2-5
STRING OPERATOR 3-2
STRING EXPRESSIONS 3-1 TO 3-3
STRING SCALAR VARIABLES 2-3
STRING ARRAVS 2-6
STRING 1-7,2-2,2-3,2-6,3-2 TO 3-4
STRING VALUES 2-2
STRING CONSTANT 1-8,2-2
STRING VARIABLE 5-20
STRUCTURE OF A BASIC PROGRAM 1-1
SUB EUNCTION 3-5
SUBROUTINE INTERFACE 7-1 TO 7-6
SUBROUTINE 5-3,5-14,5-37,71 TO 7-6
SUBSCRIPTS 5-20,6-2
SUBSCRIPT EXPRESSIONS 2-5,5-18
SUMMARV OF PROGRAM EDITING 1-4

X-8

INDEX

r

SVMBOLIC DEVICE 1-6
SVSTEM RESPONSES 4-1
SVSTEM EDITOR 3-2, 7-5
SVSTEM COMMANDS 1-8
SVSTEM FUNCTIONS 3-4 TO 3-6

TAB CHARACTERS 5-18
TAB REQUEST 5-26
TAN FUNCTION 3-5
TELETYPE 1-1, 1-5, 1-8, 4-1, 4-2, 5-6, 5-18

5-23, 5-25, 5-35, 5-41, 6-10
TO 5-10
TRACE 5-33
TRANSPOSE OPERATIONS 6-8
TRN 6-8
TRUTH VALUE 5-16, 5—17
TWO DIMENSION 2-3 TO 2-5
TVPES OF DATA 2-1

UFD 1-5, 1-6
UNARV OPERATORS 3-1
UNDECLARED 2-5
UPPER BOUND 5-8
USER FILE DIRECTORY 1 5, 1-6
USER DEFINED FUNCTIONS 3-7

V 1-11
VARIABLES 1-7,1-3,1-10,2-2 TO 2-6,5-3,5-34
VECTOR 2-3, 5-8, 6-1, 6-8
VERTICAL ARROW 2-2,5-23

WRITE 4-2, 5-40
WRITE LJSING 5-42
WRITING FILES 1-5

ZER 6-2 TO 6-4
ZONES 5-25

X-9

APPENDIX C

BASIC SUMMARY

r

r

System Commands:

CHAIN 'GAMMA'
CLEAR
CONTINUE
FILE 'PNAME'
FILE 'PNAME', 1000, 1999
LIST
LIST 1000, 1999
LOAD 'ALPHA'
LOAD 'BETA', 1000
NEW
QUIT
RUN
RUN 45

Control Statements:

CALL 1
CALL 5 (A3, 6, 1-2)
CHAIN 'PROG02'
END
FOR A4 = 50, -4.5, -1.2
FOR Cl = 2, 10, 1
FOR Cl = 2 TO STEP 1
GO SUB 30
GO TO 50
IF Cl 1 GO TO 40
IF D4 = 'ANY' THEN 50
IF X = 5 THEN Z = 3
NEXT A4
ON (1-1) GO TO 10, 20, 60

GOSUB
-ON ERROR #U GO TO 40
STOP

Input/Output Statements:

CLOSE Ul
DATA 2,3,4, - 3.7E2
DEFINE FILE #3 ='TEST 3'
DEFINE FILE #(1+3) ='(LPR)'
ENTER #U,TT,T2,X
ENTER #U,T1,T2,A$
ENTER #U
ENTER T1,T2,X
ENTER T1,T2,A$
INPUT 13, II, X(l-3)
INPUT LINE A$
MARGIN N
ON END #1 GO TO 999
PRINT X4, 'FEET'
PRINT USING F$, XI, X4
READ Al, A2, A3
READ #3, Al, A2, A3
READ LINE #U A$
RESTORE
REWIND #3
WRITE #3, X4, 'FEET'
WRITE USING F$, #3, XI, X4

Specification Statements:

BREAK OFF
BREAK OFF 10,40
BREAK ON 40/318,215,10
DEF FNX(*) = 2/COS(*) *:
DIM A (3), B (40,3)
REM Comment Line
TRACE OFF
TRACE ON

Definition Statements:

B$ = '0001'
LET 13=SIN(K-4.5)+Q3
LET S$(J+5) = M$+D$+'.00

r
C-l

BASIC SUMMARY (Cont'd)

Matrix Statements: String Operator:

MAT X = ZER + Concatenat ion
MAT X = CON
MAT X = IDN
MAT X = Y + Z Functions:
MAT X = Y - Z
MAT X = 4 * Z ABS(X)
MAT X = (5) * Y ACS(X)
MAT X = TRN (Y) ASN(X)
MAT X = INV (Y) ATN(X)
MAT READ X, Y, Z COS(X)
MAT READ #N,X, Y, Z CUT$$(A$,I)
MAT WRITE #N,X, Y, Z DATE$
MAT INPUT X, Y, Z DEG(X)
MAT PRINT X, Y, Z DET (A)

EXP(X)
INDEX(A$,B$)

Formatted Print Descriptors: INT(X)
LEN(X$)

Replace with Digit LIN(*)
Insert Dec. Point LOG(X)

, Insert comma if needed RAD(X)
+t++ Insert exponent field RND(X)
+ Insert (+) or (-) SGN(X)

Insert (SP) or (-) SIN(X)
++ Insert leading (+) or (-) SQR(X)

Insert leading (SP) or (-) SPA(I)
$ Inser t do l lar s ign STR$ (X)
$$ Insert leading dollar sign SUB(X$,Y,Z)

TAB (I)
TAN(X)

Arithmetic Operators: TIME$
VAL(A$)

+ A D D VAL(A$,I)
SUB
MUL
DIV
EXPON

Relational Operators:

<
>

<=
=<
>=
=>
<>
><

.LT

.GT
.EQ
.LE

.GE
.NE

C-2

APPENDIX D

'NUMBER' - UTILITY TO

NUMBER OR RE-NUMBER BASIC

PROGRAMS

PROGRAM DESCRIPTION

NUMBER is a FORTRAN program that reads a BASIC program and either
numbers or re-numbers its statements.

NUMBER is invoked as an external command by typing:

NUMBER

The program, NUMBER, then responds:

PARAMETERS

The parameters that may be specified are:

IFILE - input file name (first 6 characters)
OFILE - output file name (first 6 characters)
START - starting statement number (Decimal 1 <_ START < 9999)
INCR - statement number increment (Decimal 1 <_INCR <_ 9999)

The parameters, OFILE, START, and INCR are optional. However, if INCR
is specified, START must be specified also. If OFILE is omitted, the
output is placed in IFILE. If START and INCR are both omitted, their
value is 1. If INCR alone is omitted, its value is 1.

The input file specified by IFILE can be either a completely numbered
file or a partially numbered file. If every statement has a statement
number, the file is re-numbered in the order of statement numbers of the
input file. For example, if the input file contained the following
statements:

r
r

D-l

10 DIM A(9,9)
12 MAT A = ZLR
60 W1=J
65 J2 = J
5J FOR K-l TO 7
SJ FOR 1=1 TO -.5
7J FOR J=I-1 TO j
60 IK J<=1 THEN 9^
90 JOSUB 290

95 .UXI J
11J NEXT I
120 NEXT K
160 MATPRINT A
139 STOP

and the following sequence of command lines is initiated

N U M B E R = u s e r t y p e s

PARAMETERS = system responds

INMAT OUTMAT 10 10 = user types

where INMAT is the input file, OUTMAT is the output file, the starting
statement number is 10, and increment is 10. The output becomes:

10 DK1 A(9,9)
20 MAT A= ZER
60 H - 0
40 W2 = 0
50 FOR K=l TO 7
60 FOR 1=1 TO 6
70 FOR J=I-1 TO
60 IF J<=1 THEN 1 JO
90 GOSUB 29J

1 JJ NEXT J
11J NEXT I
120 NEXT K
150 MATPRINT A
140 STOP

D-2

The input file specified by IFILE can be only partially numbered,
NUMBER numbers statements in this type of file in the order of their
occurrence. In the following example, the file is sequential and
only the referenced lines contain numbers.

REM TEST OF THE NUMBER PROGRAM.
REM OBJECT IS TO SEE HOW A PARTIALLY NUMBERED PROGRAM IS HANDLED.
REM
10 INPUT N
PRINT 'IS THIS THE END":
INPUT N*
IF NS ='END-' THEN 39
GOSUB 580
GO TO IO
33 PR J NT 'THIS IS THE LIVING END. •-
END
REM *****BEGIN SUBROUTINES. *****
588 LET X = N - 2
V = 2*N
S = N/2
q = SQRCN?
PRINT N: •'***•', Q, S, V, X
PRINT
533 RETURN

The results of the interaction

NUMBER
PARAMETERS
PTESTN 2 2

are as follows:

2 REM TEST OF THE NUMBER PROGRAM.
4 RLM OBJECT IS TO SEE HOW A PARTIALLY NUMBERED PROGRAM I',:. HANDLED
6 REM
3 INPUT N

10 PRINT 'IS THIS THE END":
12 INPUT N*
•14 IF N*='END-' THEN 20
■16 GOSUB 26
IS GOTO 8
20 PRINT -'THIS IS THE LIVING END.
22 END
24 REM *****BEGIN SUBROUTINE^. *****
26 LET X-N~2
20 Y=2*N
38 S=N/2
32 Q=SQRvN";>
34 PRINT N :■'***•', Q, S, V, X
36 PRINT
3 8 R E T U R N n _ 3

Note that statements are numbered by NUMBER using only as many
digits as required. Thus, '599' in the above example becomes '38'.

When the NUMBER program completes execution, the input file, IFILE, is
closed; and the output file, OFILE, is also closed if it was opened.

ERROR MESSAGES

Messages

BAD PARAMETERS

XXXXXX NOT FOUND

XXXX DUP LINE NUMBER

INPUT FILE NULL

MEMORY OVERFLOW

LINE NUMBER OVERFLOW

Remarks

If either START or INCR are
specified with more than 4
digits, NUMBER requests a
new parameter line.

The specified IFILE does
not exist. Control returns
to DOS.

XXXX occurs as a line number
more than once. Control
returns to DOS.

The specified IFILE is empty.
Control returns to DOS.

There is not enough memory
to contain a map of line
numbers. Control returns to
DOS.

A new line number 9999.
Control returns to DOS.

D-4

APPENDIX E

MEMORY REQUIREMENTS

Memory
Resident
System

DOS
CONTROL

DOS-VM
CONTROL

INTERPRETER INTERPRETER

and and

IOCS IOCS

VI? " Y I P " "

Tables,
Work Areas,

Etc.

Tables, Work
Areas, Etc.

DOS
5.4K

16K

MINIMUM

*See Tables on
Page E-2 for
memory
a l l oca t i on

32K

INTERPRETER

and

IOCS

VIP

Tables,
Work Areas,

Etc.

DOS 6.6K

MAXIMUM
SYSTEM

:s—
INTERPRETER

co

and

IOCS
atw
CO VIP
£
i Tables,

i — i
>

Work Areas,
Etc.

:**
vO

r 32K

E-1

Single
Precision

BASIC

Double !
Precis ion

BASIC

BASIC 7.2K * *

BASIC with
PRINT USING 8.OK * *

BASIC with
MATRIX 8.2K * *

BASIC with
PRINT USING
§ MATRIX

10.2K * *

Interpreter and IOCS Memory
A l loca t ion

High Speed and
Floating Point
Ar i thmet ic

Memory
Required
Single-Prec.

Memory
Required
Double-Prec.

Neither 850 wds. * *

High Speed
Arith. only 640 wds. * *

High Speed §
Floating Point 0 wds. * *

VIP (Virtual Instruction Package)

Memory Requirements

** to be supplied when double precision is
avai lable.

E-2

Function Memory Required

Fixed Table 700 words (single prec.)

1300 words (Double prec.)

Program
Storage

APPROX. 1 Word/2 char.

STATEMENT 2 Words/Statement Index

Packet
Storage

String values
and FOR-NEXT loop
parameters

Array
Storage

Dependent upon size.

Memory Allocations for
Tables, Work Areas, etc.

r
r

E-3

INDEX

ABS(X) 3-5
ABSOLUTE VALUE FUNCTION 3-5
ACCURACY 2-1A
AD B-1
ADDITION 3-1
AO B-1
AR B-1
ARCTANGENT 3-5
ARCTANGENT FUNCTION 3-5
ARGUMENT 3-4
ARGUMENT LIST 3-4
ARGUMENT: USER DEFINED FUNCTION 3-7
ARITHMETIC DATA POOL 5-36
ARITHMETIC OPERATORS 3-1
ARITHMETIC VARIABLE 5-19
A R R AY 1 - 7 / 2 - 1 A / 2 - 3 - 2 - 6 / 5 - 8 / 5 - 2 0 , 6 - 1
ARRAY ADDITION 6-5
ARRAY ASSIGNMENTS 6-5
ARRAY BOUNDS 2-5
ARRAY CONSTANTS 6-2
ARRAY DATA TYPE 2-3
ARRAY DECLARATION 2-4
ARRAY DIMENSIONS WITH REDIMENSIONING 6-3
APRAY DIMENSIONS 2-5/2-6
ARRAY ELEMENT REFERENCE 2-5
ARRAY ELEMENTS 2-3/5-19/6-2
ARRAY MANIPULATION STATEMENTS 5-1/6-1
ARRAY MULTIPLICATION 6-6
ARRAY NAME 2-3
ARRAY REDIMENSIONING 2-5/6-1
ARRAY STATEMENTS 6-1
ARRAY STORAGE 2-3
ARRAY STORAGE ALLOCATION 2-5
ARRAY SUBSCRIPT 2-3 /2-5 /2-6
ARRAY SUBTRACTION 6-5
ARRAY VARIABLES 2-3
ASC 5-6A
ASC SEP 5-6A
A S C I I 2 - 2 / 3 - 4 / 5 - 6 A / 5 - 3 6
ASCII FILE 4-2
ASR 5-6
ASSEMBLY LANGUAGE 5-3/7-1
ASSIGNED 6-1
ATN(X) 3 -5

BASE E 3-5
BASIC 1-1
BASIC FILE 4-1
BASIC LANGUAGE INTERPRETER 1-1/2-4

1-1

INDEX

BASIC PROGRAM 1-1
BASIO 5-6A
BATCH MODE 1-2/1-5 - 1-6A
BD B-1
BE B-1
BIN 5-6A
B I N D A 5 - 7 , 5 - 2 2 / 5 - 4 1
BINARY FILE 5-6A
BINARY OPERATOR 3-1
BL B-1
BLANKS 1-3
BOUNDS 2-3/2-5
BP B-1
BREAK 5-2
BREAK STAT MENT 1-7
BREAKPOINTS 5-2
BU B-1

CALL STATEMENT 5-2/7-1
CALLP SOURCE 7-2
CARD READER 5-6A
CARDS 1-5/5-6
CARRIAGE RETURN 1-2/1-3
CH B-1
CHARACTER ORDERING 3-4
CHARACTER OVERFLOW 5-25
CLEAR COMMAND 1-10
CLOSED FILE 4-2
CN B-1
COLON SEPARATOR 5-25
COLUMN 0 6-1
COLUMN MAJOR 2-3
COMMA 2 -3 /4 -2 /5 -29
COMMA SEPARATOR 5-25
COMMAND 1-1/1-8
COMMAND FORMAT 1-6 - 1-12
COMMAND PROCESSOR 1-1
COMMAND SYNTAX 1-8 - 1-12
COMPARISON OF STRINGS 3-4
COMPILER 7-1
CON 6-2/
CONFIGURATION FILE 7-1/7-2
CONSTANTS 2-1 . 2-1 A
CONTENTS OF FILE 4-1
CONTEXT ERROR 1-12
CONTINUE COMMAND 1-10
CONTROL VARIABLE 5-9/5-20
CONTROL-C 1-11
CONTROL-P 1-11
CONVERSATIONAL MODE 1-2 - 1-4/1-6A/4-1

1-2

INDEX

CONVERSION 3-1
COS(X) 3-5
COSINE FUNCTION 3-5
CP B-1
CR B-1
CURRENT BOUNDS 6-1/6-2
CV B-1

DAM FILE 5-7
D ATA 1 - 5 / 4 - 1 / 5 - 4
DATA FILES 4-1
DATA LIST POINTER 5-36
D ATA P O O L 5 - 4 / 5 - 3 4 / 5 - 3 6 / 6 - 9
DATA STATEMENT 5-34
DATA TYPE: ARRAY 2-3
DATA TYPES 2-1 - 2-6/3-4/5-17
DEBUGGING 1-7/5-40
DECIMAL POINT 1 -7 /2 -1 /5 -28
DECIMAL POINT HANDLING 1-7
DEF STATEMENT 3-7/5-5
DEFAULT ARRAY BOUNDS 2-5
DEFAULT ASSIGNED VALUE 5-19
DEFAULT VALUE 5-19
DEFINE FILE STATEMENT 4-2/5-6/5-35
DEFINE READ FILE STATEMENT 4-2/5-6
DEFINING NUMERIC FIELDS 5-27
DEFINING STRING FIELDS 5-27
DELETING A STATEMENT 1-4
DELIMITERS 1-5
D F V I C E 1 - 5 / 1 - 6 / 1 - 9 / 4 - 1 / 5 - 6
DEVICE IDENTIFIER 5-6 /5-6A
DEVICE NAME 1-5,4-2/5-6
DF B-1
D IM STATEMENT 2 -4 /2 -5 /5 -8 /6 -1
DIMENSIONS 2-3
DISK 1-5
DISK F ILE 5 -6A/5 -38
DIVISION 3-1
DM B-1
DOLLAR SIGN 2-3/5-31
DOS 1-11
D 0S/V M 1-11
DOUBLE PRECISION 2-1/2-1A/5-1

E B-2
E D I T O R 1 - 3 / 3 - 1 / 4 - 1
EE 8-1
E L E M E N T 2 - 3 / 6 - 1 , 6 - 2
ELEMENT: APRAY 2-3
END OF FILE 5-21

1-3

INDEX

END OF PROGRAM 5-9
END STATEMENT 5-9/5-39
ENTERING BASIC 1-1/1-2
EQUAL 3-2
EQUAL PRECEDENCE 3-1
ERASE CHARACTER 1-3
FRROR MESSAGES 1-12,B-1,B-2
ERROR: CONTEXT 1-12
ERROR: EXECUTION 1-12,B-1,B-2
ERROR: SOURCE 1-1 2,B-1/-B-2
ERROR: SYNTAX 1-12
ERRORS 1-12 ,B-1 ,B-2
ES B-1
ESCAPE CONVENTION 3-1
EVALUATION 3 -1 ,3 -3
EVALUATION: FUNCTION REFERENCE 3-4
EVALUATION: OF EXPRESSION 3-1
EVALUATION: OF RELATIONAL EXPRESSIONS 3-1
EX B-1
EXECUTING A PROGRAM 1-5
E X E C U T I O N 1 - 1 , 1 - 3 , 1 - 5
EXECUTION ERRORS 1-12,B-1,B-2
EXP(X) 3-5
E X P O N E N T 2 - 1 , 2 - l A , 3 - ?
EXPONENT FIELD 2-1
EXPONENT FUNCTION 3-5
EXPRESSION EVALUATION 3-1
EXPRESSION: IN FUNCTION REFERENCE 3-7
EXPRESSIONS 3-1 - 3-7,5-5
EXPRESSIONS: FILE 4-3

F B-2
FALSE 5-15
FE B-1
F I L E 1 - 5 , 1 - 6 , 1 - 9 , 4 - 1 - 4 - 3 , 5 - 3 9
FILE COMMAND 1-5 ,1-8 ,1-9 ,4-1
FILE CONTENTS 4-1
FILE EXPRESSIONS 4-3
FILE MODES 5-6A
FILE NUMBERS 4-2,5-41
FILE UNIT 5-22
FILE UNIT NUMBERS 5-6
F I L E N A M E S 1 - 5 , 4 - 2 , 5 - 6
FILES CLOSED 5-39
FILES OPENED 5-39
FIXED LENGTH RECORDS 5-7
FLOATING POINT 2~1,2-1A,3-1
FLOATING POINT ARITHMETIC 3-1
FLOATING POINT NUMBER 2-1
FM B-1

1-4

INDEX

FN B-1
FO B-1
FOR 5-20
FOR STATEMENT 5-10
FOR-NEXT LOOP 5-20
FORMAT 1-1
FORMAT FIELDS 5-27
FORMATTED OUTPUT STRINGS 5-42
FORMATTED PRINT-STATEMENT 5-27
FORTRAN 5-3,7-1
FP B-1
FRACTIONAL SUBSCRIPTS 2-6
FRACTIONS 5-23
FT B-2
FUNCTION 1-7 ,5 -5
FUNCTION NAME 3-4
FUNCTION PARAMETER 5-5
FUNCTION REFERENCE EVALUATION 3-4
FUNCTION REFERENCE 3-4,3-7
FUNCTIONS 3-1 ,3-4 - 5-7

GO (ERROR MESSAGE) B-2
GO 1-1
GOSUB 5-13
GOTO 5-14
GREATER THAN 3-2
GREATER THAN OR EQUAL 3-2
GREATEST INTEGER 3-5
GT B-2

I/O UNIT 5-3P
IC B-?
ID B-2
IDN 6-2
IE B-2
IF STATEMENT 5-15,5-16
IMMEDIATE MODE 1-2,1-7 ,1-*
INITIAL LOAD 1-6
INITIALIZATION OF SCALAR VARIABLES 2^2
INITIALIZATION STATEMENTS 6-2
I N P U T 5 - 1 7 , 5 - 1 8
INPUT OF STATEMENT 1-4
INPUT TO BASIC PROGRAMS 5-6A
INPUT/OUTPUT 4-1
INPUT/OUTPUT STATEMENTS 4-1
INSERTING A STATEMENT 1-4
I N T (X) 3 - 5
INTEGER FUNCTION 3-5
INTEGERS 2-1 ,5 -23
INTERNAL SUBROUTINE 5-13

1-5

INDEX

INTERPRETER 1-1,7-1
INVOKING BASIC (SEE ENTERING BASIC)
IO B-2
IOCS 5-6A
IS B-?
IT B-2

KILL CHARACTER 1-3

LANGUAGE 1-1
LANGUAGE INTERPRETER 1-1
LANGUAGE PROCESSOR 1-1,5-1
LEAST INTEGER 3-5
LEFT ANGLE BRACKET 5-31
LEN(A$) 3 -5
LENGTH FUNCTION 3-5
LENGTH OF FILF RECORD 4-2
LENGTH OF STRING 2-2,2-3,3-5
LESS THAN 3-2
LESS THAN OR EQUAL 3-2
LET 5-10
LG B-?
LINE 1-1
LINE LENGTH 1-1
LINE NUMBER (SEE STATEMENT NUMBER)
LINE PRINTER 5-6,5-6A
LINE SIZE 2-2
LIST COMMAND 1-9
LITERALS 5-34
LOAD COMMAND 1-5,1-8,7-7
LOADING 1-6
LOADING A PROGRAM 1-6
LOG(X) 3-5
LOGARITHM FUNCTION 3-5
LOGICAL FILE NUMBER 4-2
LOGICAL FILE UNIT 5-6
LOGICAL UNIT 5-21
LOOP 5-10
LT B-2

MAGNETIC TAPE *1 5-6A
MAGNETIC TAPE #2 5-6A
MAGNETIC TAPE #3 5-6A
MAGNETIC TAPE #4 5-6A
MAGNETIC TAPE 1-5,5-6
MANTISSA 2-1A
MAT DIMENSION IMPROPER FORMAT B-1
MAT INPUT STATEMENT 6-11
MAT PRINT STATEMENT 6-12
MAT READ FILE STATEMENT 6-9

1-6

INDEX

MAT READ STATEMENT 6-8,6-9
M AT S TAT E M E N T S 2 - 5 , 5 - 1 , 5 - 8 , 6 - 1 , 6 - 2
MAT WRITE FILE 6-10
MAT. . .CON 6 -3
M AT I D N 6 - 3
M AT. . . Z E R 6 - 3
M AT R I C E S 6 - 1 , 6 - 3 , 6 - 7
M AT R I X 2 - 3 / 2 - 5
MATRIX ADDITION 6-5
MATRIX ADDITION 6-5
MATRIX ASSIGNMENTS 6-5
MATRIX ASSIGNMENTS 6-5
MATRIX BOUNDS 2-5
MATRIX BOUNDS 2-5
MATRIX CONSTANTS 6-2
MATRIX CONSTANTS 6-2
MATRIX DATA TYPE 2-3
MATRIX DATA TYPE 2-3
MATRIX DECLARATION 2-4
MATRIX DECLARATION 2-4
MATRIX DIMENSIONS 2-5/2-6
MATRIX DIMENSIONS WITH REDIMENSIONING 6-3
MATRIX DIMENSIONS 2-5/2-6
MATRIX DIMENSIONS WITH REDIMENSIONING 6-3
MATRIX ELEMENT REFERENCE 2-5
MATRIX ELEMENT REFERENCE 2-5
MATRIX ELEMENTS 2-3,5-19/6-2
MATRIX ELEMENTS 2-3/5-19/6-2
MATRIX MANIPULATION STATEMENTS 5-1/6-1
MATRIX MANIPULATION STATEMENTS 5-1/6-1
MATRIX MULTIPLICATION 6-6
MATRIX MULTIPLICATION 6-6
MATRIX NAME 2-3
MATRIX NAME 2-3
MATRIX REDIMENSIONING 2-5/6-1
MATRIX REDIMENSIONING 2-5/6-1
MATRIX STATEMENTS 6-1
MATRIX STATEMENTS 6-1
MATRIX STORAGE 2-3
MATRIX STORAGE 2-3
MATRIX STORAGE ALLOCATION 2-5
MATRIX STORAGE ALLOCATION 2-5
MATRIX SUBSCRIPT 2-3 /2-5 /2-6
MATRIX SUBSCRIPT 2-3 /2 -5 /2 -6
MATRIX SUBTRACTION 6-5
MATRIX SUBTRACTION 6-5
MATRIX VARIABLES 2-3
MATRIX VARIABLES 2-3
MAXIMUM STRING LENGTH 2-2
MEMORY 2-2/5-1

1-7

INDEX

MEMORY MAPPING 5-1
MEMORY SIZES 5-1
MIXED DATA 3-2
ML B-2
MM B-2
MODE OF FILE 5-6
MODES OF OPERATION 1-1/1-2
MR B-2
MS B-2
MULTI-WAY BRANCH 5-21
MULTIPLE DOLLAR SIGNS 5-31
MULTIPLICATION 3-1

NAME OF USER DEFINED FUNCTION 3-7
N A M E S 2 - 2 / 2 - 3 , 2 - 6
NATURAL LOGARITHM 3-5
NESTED 5-10
NEW COMMAND 1-10
NEXT 5-2 3
NEXT STATEMENT 5-10
NON-LOCAL 5-14
NOT EQUAL 5-2
NULL STRING 2-3,5-19
NUMERIC ARRAY 2-5
NUMERIC CONSTANT 2-1,5-4
NUMERIC EXPRESSION 3-1 ,3 -2 ,5 -15 ,5 -23
NUMERIC FIELDS 5-2S
NUMERIC OPERAND 3-1
NUMERIC SCALAR EXPRESSION 6-6
NUMEPIC SCALAR VARIABLES 2-2,2-3
NUMERIC TO STRING CONVERSION 3-1
NUMERIC VALUES 2-1/2-1A
NUMERIC VARIABLE 5-19

0 R-2
ON 5-21
ON END 5-21/5-22
ONE-DIMENSION 2-3
OPEN FILE 4-2,5-6
OPERAND 3-1
OPERATING MODES 1-1,1-2
OPERATING SYSTEM 1-1,1-3,1-8
OPERATOR 3-1
ORDER OF ARRAY 2-3
ORIGINAL BOUNDS 6-1
OUTPUT DEVICE 1-9
OV B-2

P B-2
PAPER TAPE 1-5

I - ;

INDEX
PAPER TAPE READER PUNCH 5-6A
PARENTHESES 3-1,5-6
PARENTHESES: IN EXPRESSION 3-1
PARTIAL LINE 5-25
PLUS OR MINUS SIGNS 5-29
PMA 7-1
PN B-2
PO B-2
POSITION STATEMENT 5-7,5-22
POUND SIGN 5-28,5-31
POWER 3-5
PR B-2
PRECEDENCE 3-1
PRINT ELEMENT 5-41
PRINT STATEMENT 1-3,5-23
PRINT USING STATEMENT 5-1,5-27
PRINTING NUMERIC STATEMENTS 5-23
PRINTING SPECIAL CHARACTERS 5-33
PRINTING STRING EXPRESSIONS 5-24
PRODUCTS OF ARRAYS 6-7
PROGRAM 1-1
PROGRAM FILES 4-1
PROGRAM STORAGE AREA 1-3,1-6^1-7
PROGRAM STRUCTURE 1-1 - 1-12
PROMPT 1-1
PROMPT CHARACTER,! 5-17
PTR/P 5-6

QUIT 1-11

R B-2
RADIANS 3-5
RANDOM NUMBER 3-5
RANDOM NUMBER GENERATOR 3-5
RANGE OF DIMENSION 2-6
RANGE OF FILE NUMBER 4-2
RANGE OF NUMERIC VALUES 2-1 A
RE B-2
R E A D # N , L 1 , . . . , L N 5 - 3 5
READ * FILE 5-36
READ AFTER WRITE CHECK 5-41
READ FILE 5-35
READ STATEMENT 4-2,5-4,5-34
READING 5-6
RECORD 4-1/5-22
RECORD NUMBER 5-22
RECORD SIZE 5-7
REDIMENSIONED 5-8
REDIMENSIONING 2-5
REFERENCE TO ARRAY ELEMENT 2-5

1-9

INDEX

REFERENCE: FUNCTION 3-4
RELATING CALL TO SUBROUTINE 7-1
RELATIONAL EXPRESSION 3-1 ,3-2 ,5-15
RELATIONAL OPERATORS 3-2
RELOCATION CONSTANT 1-8
REM 5-36
REMARK 5-36
REPLACING A STATEMENT 1-4
RESTARTING 1-11
RESTARTING BASIC 1-11
RESTARTING FROM DOS 1-11
RESTARTING FROM DOS/VM 1-11
RESTORE H 5-36
RESTORE $ 5-36
RESTORE 5-34,5-36
RETURN STATEMENT 5-13,5-26
REWIND STATEMENT 4-2,5-38,5-41
RI B-2
RIGHT ANGLE BRACKET 5-32
RND(X) 3-5
ROUNDING 3-6
ROW 0 6-1
ROW 6-7
RULES OF PRECEDENCE 3-1
RUN COMMAND 1-5,1-6,1-9
RUNNING A PROGRAM 1-6
RUNNING PROGRAM WITH CALL STATEMENTS 7-7

SC B-2
SCALAR MULTIPLICATION 6-6
SCALAR VARIABLES 2-2,5-19
SCIENTIFIC FORMAT 5-24
SE B-2
SECOND 6-7
SENSE SWITCH 1-11
SF 8-2
SGN(X) 3-5
SI B-2
SIGN 2-1
SIGN CHARACTER 5-23
SIGN FUNCTION 3-5
SIGNED DECIMAL 2-1
SIGNIFICANT DIGIT 2-1
S I N (X) 3 - 5
SINE FUNCTION 3-5
SINGLF PRECISION 2~1,2-1A
SINGLE QUOTES 1 -5 /1 -6 ,2 -2 /5 -17
SM B-2
SN B-2
SOURCE ERRORS 1-12/B-1/B-2

1-10

INDEX

S O U R C E F I L E 1 - 5 / 1 - 6
SPACE 5 -25
SPECIAL CHARACTERS 1-3/5-27
SQ B-2
SQR(X) 3-5
SQUARE ROOT FUNCTION 3-5
SS B-2
ST B-2
START 1002 1-11
STATEMENT 1-1 - 1-2,1-8,5-1 - 5-42
STATEMENT BODY 1-3
STATEMENT DELETION 1-4
STATEMENT EXECUTION 1-1
STATEMENT FORMAT 1-1
STATEMENT INPUT 1-4
STATEMENT INSERTION 1-4
STATEMENT NUMBER 1-1 - 1-3,1-6,1-7
STATEMENT REPLACEMENT 1-4
STATEMENT TERMINATOR (SEE CARRIAGE RETURN)
STEP 5-10
STOP 5-39
STORAGE 1-3,6-1
STORAGE ALLOCATION 2-5
STORAGE OF ARRAYS 2-3,2-4
STORAGE OF STATEMENTS 1-3
STRING 2 -2 ,2 -3
STRING ARRAY 2-5
STRING COMPARISON 3-4
STRING CONSTANT 2-2,5-4
STRING DATA POOL 5-36
STRING EXPRESSION 3-1 ,3 -2 ,5 -3 ,5 -15 ,5-2 3
STRING FIELDS 5-31
STRING LENGTH 2-2,3-4
STRING OPERANDS 3-1
STRING OPERATOR 3-1
STRING SCALAR VARIABLES 2-3
STRING TO NUMERIC CONVERSION 2 3-1
STRING VALUES 2-2,3-4
STRING VARIABLE NAME 2-3
STRING VARIABLE 5-19
S U B (A $, I , J) 3 - 5
SUBROUTINE 5-3
SUBROUTINE IDENTIFIER 5-3
S U B S C R I P T 2 - 3 , 2 - 5 , 2 - 6 , 5 - 1 9
SUBSCRIPT ARRAY ELEMENTS 5-19
SUBSCRIPT EXPRFSSION 2-6,5-17,5-34
SUBSCRIPT RANGE 2-6
SUBSTRING 3-5
SUBSTRING FUNCTION 3-5
SUBTRACTION 3-1

1-11

INDEX

SYNTAX ERROR 1-12
SYSTEM COMMAND 1-2
SYSTEM EDITOR 1-3,3-1,4-1
SYSTEM FUNCTION 3-1,3-4 - 3-7

TAB REQUEST 5-41
TAN(X) 3 -5
TANGENT FUNCTION 3-5
TARGET ARRAY 6-1
TELETYPE 5-6A
TERMINAL 1 -5 ,5 -6A
TO 5-10
TRACE 5-39
TRACE OFF 5-39
TRACE ON 5-39
TRAILING COMMA 5-4
TRANSFER INTO A COMPLETED LOOP 5-10
TRANSPOSE OPERATIONS 6-8
TRUE 3-3 ,5 -15
TWO-DIMENSION 2-3
TWO-DIMENSIONAL 6-2,6-7
TYPE: SCALAR VARIABLES2-2
TYPES OF DATA 2-1 - 2-6

UF 5-35
UFD 1-5
UNARY MINUS 3-1
UNARY OPERATOR 3-1
UNARY PLUS 3-1
UNASSIGNED SCALAR STRING VARIABLES 5-19
UNDECLARED ARRAY 2-5
UNIT SPECIFIER 5-6
USER DEFINED FUNCTION NAME 3-7
USER DEFINED FUNCTION 3-1,3-7
USER DEFINED NUMERIC FUNCTION 3-7
USER FILE DIRECTORY 1-5

VA R I A B L E 1 - 1 1 - 7 , 2 - 1 , 2 - 1 A , 5 - 3 , 5 - 3 4
VARIABLE NAME 2-2
VARIABLES: ARRAY 2-3,2-4
VARIABLES: SCALAR 2-2,2-3
VARIABLES: SUBSCRIPTED 2-3,2-4
VECTOR 2-3,2-5
VERSION OF BASIC 5-1
VERTICAL ARROW 5-29

WR ERRO-R 5-41
WRITE FILE 5-41
WRITE STATEMENT 4-2
WRITE USING 5-42

1-12

INDEX

WRITING 5-6

X B-2

Z B-2
ZER 6-2
ZERO LENGTH STRING 2-3
ZERO SUBSCRIPTS 2-5
ZONES 5-25r

r

r
1-13

	Front Cover
	Copyright
	i
	Contents
	ii
	iii
	iv
	v
	vi
	Foreword
	vii
	viii
	Related Publications
	ix
	Section 1
	Structure of a BASIC Program
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-6A
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	Section 2
	Types of Data
	2-1
	2-1A
	2-2
	2-3
	2-4
	2-5
	2-6
	Section 3
	Expressions and Functions
	3-1
	3-2
	3-3
	3-4
	3-5
	3-5A
	3-6
	3-6A
	3-6B
	3-6C
	3-6D
	3-7
	Section 4
	Files
	4-1
	4-2
	4-3
	Section 5
	Statements
	5-1
	5-2
	5-3
	5-3A
	5-4
	5-5
	5-6
	5-6A
	5-7
	5-8
	59-1
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-18A
	5-19
	5-20
	5-20A
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-36A
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	Section 6
	Array Manipulations and Array Statements
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	Section 7
	Interfacing Conventions
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	Appendices
	Appendix A
	Sample Programs
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	PTU-59
	Rev. 16 Interpretive Basic
	59-1
	59-2
	59-3
	59-4
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	Appendix C
	BASIC Summary
	C-1
	C-2
	Appendix D
	'NUMBER' - Utility to Number or Re-number BASIC Programs
	D-1
	D-2
	D-3
	D-4
	Appendix E
	Memory Requirements
	E-1
	E-2
	E-3
	Index
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	I-8
	I-9
	I-10
	I-11
	I-12
	I-13

